
SOFTWARE ENGINEERING LABORATORY SERIES SEL-89-008

PROCEEDINGS OF THE SECOND
NASA ADA USERS' SYMPOSIUM

NOVEMBER 1989

iv _ _ ;_!,'I (:,_'_b_,)

T ! _!' ? _

_.__ _ t

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

SEL-89-008

PROCEEDINGS OF THE SECOND NASA ADA

USERS' SYMPOSIUM

November 1989

GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the

National AeronautiCs and Space Administration/Goddard Space Flight Center

(NASA/GSFC) and created for the purpose of investigating the effectiveness of

software engineering technologies when applied to the development of applications

software. The SEL was created in 1977 and has three primary organizational
members:

NASA/GSFC, Systems Development Branch

The University of Maryland, Computer Sciences Department

Computer Sciences Corporation, Systems Development Operation

The goals of the SEL are (1) to understand the software development process in

the GSFC environment; (2) to measure the effect of various methodologies, tools,

and models on this process; and (3) to-identify and then to apply successful devel-

opment practices. The activities, findings, and recommendations of the SEL are

recorded in the Software Engineering Laboratory Series, a continuing series of

reports that include this document.

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771

....mrENT m.l °°,

s;,ga mPRBCEDtNG PAGE BLANK NOT FILMED

AGENDA

SECOND NASA ADA USERS' SYMPOSIUM

NASA/GODDARD SPACE FLIGHT CENTER

BUILDING 8 AUDITORIUM

NOVEMBER 30, 1989

Summary of Presentations

R. Kester (CSC)

Session 1

Topic: NASA-Wide Activities

Session Leader: E. Seidewitz (NASA/GSFC)

Ada in NASA: Policy and Directions

F.E. McGarry (NASA/GSFC)

Ada and the Space Station

R. Nelson (Space Station Freedom Program Office)

Software Support Environment (SSE): Program Status

F. Barnes and D. Badal (Lockheed)

Session 2

Topic: Center and Project Activities

Session Leader: M. Stark (NASA/GSFC)

Ada in the SEL: Experiences with Operational Ada Projects

E. Seidewitz and M. Stark (NASA/GSFC)

The Application of CASE Technology and Structured Analysis to a Real-Time Ada Project

S. Cohen (GE/STGT)

Ada at JPL: Experiences and Directions

T. Fouser (JPL)

Ada and the OMV Project

W. Harless (TRW)

5798

AGENDA (Cont'd)

Session 3

Topic: Space Station Activities

Session Leader: D. Littman (NASA/GSFC)

Lessons Learned: Prototyping with Ada for the Space Station Freedom Program

K. Rogers and L. Ambrose (MITRE)

Software Support Environment: Architecture and Design Overview

C. Carmody (PRC/GIS)

Flight Telerobotic Servicer

R. LaBaugh (Martin Marietta)

Lessons Learned in Prototyping the Space Station Remote Manipulator System Control

Algorithms in Ada

P. Gacuk (SPAR Aerospace)

Appendix A - List of Attendees

Appendix B - Standard Bibliography of SEL Literature

5798

SUMMARY OF PRESENTATIONS

R. Kester, CSC

5798

SUMMARY OF THE SECOND NASA ADA USERS' SYMPOSIUM

On November 30, 1989, approximately 370 attendees gathered in Building 8 at the

National Aeronautics and Space Administration (NASA)/Goddard Space Flight

Center (GSFC) for the Second NASA Ada Users' Symposium. The symposium

was created as a forum for NASA centers and contractors to exchange their ideas,

plans, and experiences in using the Ada language or related methods and tools. It

is sponsored by NASA/GSFC and hosted by the Goddard Ada Users' Group.

Among the audience were representatives from 3 universities, 17 government agen-

cies, 7 NASA centers, and 75 private corporations and institutions. Eleven papers

were presented in three sessions:

• NASA-wide Activities

Center and Project Activities

Space Station Activities

SESSION 1 - NASA-WIDE ACTIVITIES

Ed Seidewitz of GSFC opened the symposium, welcomed attendees, and intro-

duced the first speaker. The lead-off presentation, "Ada in NASA: Policy and

Directions," was given by Frank McGarry, also of GSFC. McGarry described the

four-step process of formulating NASA policies for Ada:

1. Assess current capabilities/needs/directions

2. Conduct an open review of findings/recommendations

3. Formulate the positions/recommendations of each NASA center/office

4. Develop an action plan for NASA

McGarry indicated that the first three steps have been completed. The response

from NASA contractors has been very supportive of the recommendation that

NASA adopt Aria, but issues, questions, and considerations were identified. The

response from NASA centers has been mixed, with four centers supporting an Ada

mandate, five supporting Ada but without mandate, four uncertain, and three op-

posed. The primary concerns expressed by NASA are the cost and maturity of

5798

R. Kester
CSC
1 o1"7

Ada technology. McGarry concluded by stating that completion of the NASA ac-

tion plan has been understandably delayed by a change in NASA administration,

but that some centers may move ahead and adopt Ada on a center-wide basis.

The second speaker, Robert Nelson of the Space Station Freedom Program Office,

provided an update on the current status of the Space Station Freedom program

and discussed where Aria fits in ("Aria and the Space Station"). Most systems are

currently reviewing software requirements. A major impact on the program has

been the reduction in the power budget for the in-orbit portion, which has caused

reevaluation of the planned software and computer capabilities.

Nelson discussed the program-level risk management plan and noted that Ada was

not identified as one of the top 10 risks, although it does appear on the list. An

object-oriented architecture is evolving and a task team met recently to address

some overall architectural issues. The current estimate of the total size of space

station software is 10.5 million source lines of code (SLOC), mostly Ada. Nelson

pointed to the number of interfaces and to the phased on-orbit assembly as repre-

senting significant software challenges for the Space Station Freedom program.

The final speaker in the first session, Frank Barnes of Lockheed, presented "Soft-

ware Support Environment (SSE): Program Status." The intent of the SSE is to

support the management of Space Station software development by NASA and its

contractors. Barnes described the dissatisfaction of users with the current release

of SSE. The overhead that results from managing any process, along with the

immaturity of the current SSE release, account for much of this dissatisfaction.

Although the final system is scheduled for release in mid-1993, much of its capa-

bilities are needed now. Barnes described the current user interface as "user-

surly," while noting that improvements in this area are planned for August 1990.

The current release is also manually intensive, a problem that should be addressed

by January 1991. Barnes summarized the SSE's major challenges as achieving a

consensus among its many users, supporting multiple host systems, and providing

capabilities that match the Space Station development schedule.

5798

R. Kester
CSC
2of7

SESSION 2 - CENTER AND PROJECT ACTIVITIES;

Ed Seidewitz of NASAJGSFC presented "Ada in the SEL: Experiences with Op-

erational Ada Projects." The Software Engineering Laboratory (SEL) develops

about 15 percent of its software in Ada for systems ranging in size from 68K to

170K SLOC. The SEL is currently in its fourth generation of Ada projects and

some trends have been noted. The use of generic packages and user-defined types

has increased, while the average size of packages and the use of tasks has de-

creased. Productivity, in statements per day, has been comparable to or lower than

that typical of FORTRAN projects. However, a strong trend in the latest Ada

projects toward increased reuse, attributable to Ada and Object-Oriented Design

(OOD), has had the effect of greatly increasing effective productivity.

Seidewitz also described the results of a study porting a system from DEC VAX/

VMS Ada to Alsys IBM/MVS Ada. The study indicates that even without designing

for portability, the conversion of Ada code required only half as much time as

would be expected for an equivalent FORTRAN system. Seidewitz concluded by

identifying plans for future Ada work, which include a real-time embedded system;

a large generalized flight dynamics support system; and studies of performance,

reliability, and maintainability.

Discussing activities on the Second TDRSS Ground Terminal project (STGT),

Sara Cohen of General Electric presented "The Application of CASE Technology

and Structured Analysis to a Real-Time Ada Project." At the start of the project,

all engineers and managers were trained in Ada. In addition, the effort was led by

a core team experienced in Ada, large projects, and ground station development.

These factors, along with the use of CASE technology, have contributed to the

success of the project to date. Diagrams have proved an excellent means of com-

munication among the team and with the customer. A data dictionary helped

ensure consistent naming among team members. Not only did the CASE tool

make design updates easier, it performed better consistency checking than would

have been possible otherwise.

Cohen concluded by summarizing the benefits of using the CASE tool. The analy-

sis and design products developed using the CASE tool made up about 80 percent

of the Software Requirements Specification, which resulted in higher productivity

than traditionally estimated. During preliminary design, the CASE model evolved

5798

R. Kester
CSC
3of7

into the software design. The model also served as the basis for the system per-

formance study and facilitated production of the software test plans.

Tom Fouser from the Jet Propulsion Laboratory (JPL) presented "Ada at JPL:

Experiences and Directions." JPL develops systems for internal research and de-

velopment and for the Department of Defense, as well 'as for NASA missions.

Currently JPL is working on a number of Ada projects. When used by Ada experts

for rapid prototyping, high productivity (18 statements per day) has been achieved.

Several other projects have seen the early design phases take longer, but anticipate

that later phases will be shortened. For training, JPL has used a combination of

in-house courses presented over a period of weeks and intensive courses brought in

from outside. In addition to development using DEC's VAX/VMS environment,

there is an increased use of the Rational development environment. Also, a study

performed for flight software found some deficiencies in performance and schedul-

ing, but these have been overcome by using a non-Ada real-time kernel in conjunc-

tion with an Ada application.

Fouser observed several common features among the variety of projects using Ada.

The general approach has been to staff a project with a mix of outside Ada con-

sultants and in-house management and engineers. In this way the base of trained

and experienced JPL engineers and managers is growing. Each project generally

encounters some problems, but finds a satisfactory work-around. More and more

projects are starting to use Ada; even those initially skeptical are beginning to

consider it a viable option.

The last speaker of the morning sessions, Walton Harless of TRW, presented "Ada

and the OMV Project." The Orbital Maneuvering Vehicle (OMV) is a remotely

controlled vehicle that will be used to assist in the launch and retrieval of satellites

beyond the shuttle's range. The flight segment contains about 14K to 20K SLOC,

almost exclusively in Ada. The ground system uses a mix of languages, including

Ada. Although initially proposed in FORTRAN and C, by the time of contract

award the motivation to use Ada had increased; hence, the flight segment and

ground system command and control software are being developed in Ada.

Harless characterized training for the project as including formal on-site training

for managers, designers, and developers. After an extensive trade study, the

5798

R. Kesler

CSC
4 of 7

project selected the TIA3 VAX-to-1750A cross-development system. Prototyping

on the TLD system indicated that some Ada features (e.g., tasking, variant re-

cords, and dynamic storage) were inappropriate for the flight segment. Harless

described the porting of Ada software between VAX, Alliant, Sun, and PCs as

relatively painless. However, when attempting to interface between dissimilar sys-

tems, he noted that tighter control must be used in specifying data representation.

Harless concluded by stressing the importance of early prototyping with the target

compiler in order to understand its strengths and weaknesses and thus guide the

design.

SESSION 3 - SPACE STATION ACTIVITIES

Kathy Rogers of MITRE presented "Lessons Learned: Prototyping with Ada for

the Space Station Freedom Program." The goal of the prototyping effort was to

examine human interface factors and gain experience with Ada and OOD. Al-

though OOD seemed to fit the problem and Ada design well, extra effort was

required to translate from functional requirements to an OOD and again from the

OOD to the data flow diagrams that the reviewers felt comfortable with. During

coding, the project found that Ada's ability to separate specification from imple-

mentation facilitated independent development. The parallel evolution of the

project's external interfaces, however, caused significant reworking of the simula-

tion code that was used for testing, a consideration not included in the project

plans. The project found that DEC's documentation and technical support were

weak in interfacing with other languages and operating system services, an area

where an expert consultant would have helped. Rogers concluded the presentation

by stating that much was learned on the project, and overall Ada was found to be a

good tool.

Next, Cora Carmody of Planning Research Corporation presented "Software Sup-

port Environment Architecture and Design Overview." Carmody began by reiterat-

ing the point made earlier by Barnes that the Space Station SSE must satisfy the

often conflicting needs of creating a long-term, lower cost life-cycle and supporting

immediate user needs in a variety of environments. The current design, based on

stable standard interfaces, represents this balance. The architecture utilizes an

object specification-driven definition of life-cycle products and processes.

5798

R. Kesler
CSC
5ot7

The architecture is divided into four layers: Common User Interface Services,

Environment Applications, Process/Object Management, and Platform. The Com-

mon User Interface Services provides both a graphical and a textual command

interface. The Environment Applications layer provides the real tools from the

user's viewpoint. The Process/Object Management layer provides access control,

and the Platform layer implements a virtual machine that insulates the higher lev-

els from the host system implementation. For performance reasons, the upper

layers may bypass intermediate layers and use the Platform layer directly.

Carmody summarized the benefits of the object-oriented approach as reduction of

life-cycle costs (by encouraging reuse and reducing maintenance costs) and en-

hanced system integrity and security.

Robert LaBaugh from Martin Marietta spoke next on their experiences developing

Ada software for the "Flight Telerobotic Servicer." The Flight Telerobotic Ser-

vicer (FTS) is a sophisticated robot that will be able to perform remote servicing

tasks controlled from the Space Station. The current estimate is that 224K SLOC

will be developed for the FTS, entirely in Ada. The flight software represents the

most significant category of code and will be implemented on a distributed system

of 22 Intel 80386 microprocessors that control the motion of the robot in real time.

The project is using the DDC-I Ada Compiler for 80386 protected mode, which

allows full use of the 32-bit architecture. The flight software will run without any

operating system, using the Ada run-time system to support interrupt handling,

low-level I/O, tasking, and memory management.

LaBaugh stated that to date, their prototyping efforts have not uncovered any defi-

ciencies in the Ada run-time system that preclude its use for real-time robotic

control. LaBaugh closed by presenting the results of performance benchmarks on

various control algorithms and matrix operations.

The final speaker of the symposium, Pete Gacuk of SPAR Aerospace, presented

"Lessons Learned in Prototyping the Space Station Remote Manipulator System

Control Algorithms in Ada." The Space Station Remote Manipulator System will

be an advanced descendant of the space shuttle robot arm. The multiple goals of

the prototyping effort examined issues related to life-cycle, methodologies, Ada

development, technical communications, Ada performance, and configuration

57_

R. Kesler
CSC
6of7

management. Rather than use an informal or shortened life-cycle, the prototype

effort used a full life-cycle with formal reviews and participation by product assur-

ance and configuration management personnel in order to better represent the

production environment and broaden the organization's experience.

Gacuk stated that the project adopted a hybrid methodology (a combination of

NASA/GSFC GOOD and Booch OOD), as this provided a transition from struc-

tured analysis to OOD. They found that typical Ada and OOD diagrams did not

provide a good basis for communications between software developers and hard-

ware engineers or testers, but that multiple notations (data flows, Booch-grams,

withing diagrams, tasking diagrams, timing diagrams, state diagrams, and excep-

tion diagrams) were needed to represent different aspects and to provide interdisci-

plinary communications. The initial performance of the prototype was

disappointing; however, after profiling and some recoding, the desired perform-

ance was achieved.

Gacuk concluded by presenting some "lessons learned about lessons learned."

First, good notes are needed throughout the process in order to document lessons

learned. Second, the conclusions reached are likely to change during the process

as you learn more. Third, lessons learned should be "stale dated," as they often

lose their value over time. Finally, without champions who continue to present and

push lessons learned, the lessons often go unlearned.

5798

R. Kester
CSC
7of7

SESSION 1 -- NASA-WIDE ACTIVITIES

Session Leader: E. Seidewitz, NASA/GSFC

Ada in NASA: Policy and Directions

F.E. McGarry

Ada and the Space Station

R. Nelson

Software Support Environment (SSE): Program Status

F. Barnes and D. Badal

5798

"ADA IN NASA: POLICY AND DIRECTIONS"

F. McGarry, NASA/GSFC

5798

(7)
00
O)

c_
0_

lJ.l
m

klJ

O

>=
n=
n= o
<u=

,<
OC

0

o

F. McOarry

NASAIGSFC

I of 20

C_
(9 @ @ ® 0

0

F. McGarry

NASA/GSFC

2 of 20

8_

0
0

F. McGarry
NASA/GSFC

3 of 20

F. McGarry
NASA/GSFC
4 of 20

LI_ cu

m

< ---
w _,

F. McGarry
NASA/GSFC
5 of 20

O

F. McGarry

NASA/GSFC

6 ol 20

LLI

0 o " _
--- CC < CC

w I-- 0 0 _:
u_ 0

- _

8 z

_o__ o_g ,,o_ "

LU

I"1" n"O 0o < n" 0 _.
I I I I

0
0

F. McGarry

NASA/GSFC

7 of 20

<
(/)
<

LU
m UJ

>

Z =E rr

LL. ,-- I:_
Z
m

O. |

0__.
<

1ll

<

l-
n_
O

<

00
I-
z
<
rl

._1

._1
i.u
rr
w'
LU
0
D
rr
El Z Z
Z I 0 0

O9

5

0
r_
_J
_J
LW r_

z

O

F. McGarry
NASA/GSFC

8 of 20

>,..
6c

5

o
o

F. McGarry
NASA/GSFC

of 20

rr" W

W

w
7-

Z
0 w
0 0
,..J O0

0
T-
O

F. McGarry

NASA/GSFC

10 of 20

0

F. McGarry
NASA/GSFC

11 of 20

• • • • • • 0 •

0

F. McGarry
NASA/GSFC
12 of 20

F. McG&rry

NASA/GSFC

13 of 20

¢ej

®

I

• • 0 • • • • • 0 • •
I

0

W

<

Z
0

C_ Z
0
0 "_ 7-o. 0

@ • @

F. McGarry

NASA/GSFC

14 of 20

W
n-

O

U_ u_ <_

< 8 ESo p_<o b

I-- O0

_ 0 0 0 0 0 0 0 0 0 0 0 • 0

F. McGarry
NASA/GSFC
15 of 20

®
Z
0
I-

ILl z <
LLi (.5 Z

Z I-- U.!
0 LU rrn 0

LLI

,,- _ -__ < _-_,

o

• • • 0 • • • • • •

I

I---
I.I. n- _n 0

0 0 0 0 <

_" 0 n- _- o_

q

F. McGarry

NASA/GSFC
16 of 20

®

m

, X
A _

o o o
,, _ uJ 00 rn
_m

• • • •

F. McOarry

NASAIGSFC

17 of 20

w
oC

2w

I--
<

__ _zO__ _o_.:. 8_<_
_O) n.. ooo • oo ooo

l,LI

Oz ;

_ _ z0 DO

_ Z _ Z

0 <

_ _8 o _
ww _

O< Z Z_>. _-- Z

F. McGatry
NASA/GSFC

18 of 20

co

o
t'.-

el

Z
O
I

O

¢_ Ill

a.
O

LLI
>
LL!
O

..J
i

O
Z

0
0

er'

ii
0

_.1

rn

C_
Z
0

m
rr"

0
rr"
U.I

0
LL

>-
rn

C3
U.I

m

<
!

._1

<
14.

!

UJ

rr"
<
F--
._.1
<
Z

m

rr"
0

I

k-
Z
U.!

0
0

ILl

W
f_

D
Z

O3
F-
fr
0
a.
w
f_

L_

<

<
Z

D
LLI
C_
<
rn

U.I
Z
m

._1
W

m

i---

Z
0

m

Z
<
r,.o
n-
O

r,..o
Z

Z

LI_

C_

U.I

W
Z

U.!

co

d
co

rr"
W
rn

W
>
0
Z

!

W

n

l--
ILl

._1
<
Z

r_
rr
0

0

T,,,,

F. McGarry

NASA/GSFC

19 of 20

>.

3

E

! I I I I !

F, McGarry
NASA/GSFC
20 of 20

"ADA AND THE SPACE STATION"

R. Nelson, Space Station Freedom Program Office

5798

R. Nelson

Space Station Freedom

Program Office
l of 20

O_

$

O

O_

Z

o _ _ _- _= _

• E 4_a|l

O
O_
O

13.

O_

0m

O

b-.

o_
¢.9

|e-_s

m

O
em

m

e-

o
iiom

12" '.O O

O '*"
I_ _ I I I I I I

111

R. Nelson

Space Slalion Freedom

Program Office

2 of 20

'_" ° w) 0')-f-_ --0 -I--" ,.._--LIJ

, , .. _ ..

--u.- - -_0- ------u_ _.
______ _ m _ _0 _m _ < , . , _- ,,,._-_. _ _r_ _, ,.-, .'. m .o .m. _ -_
>- < m ":/ " =: o. "r _" "- _:_,cx-,--

0 " "- -- --'*-- --

_ __ _--_--_. _ _-_-_.

•1__'_ !._i._ -_,._ _ ___

"- _ 2: "_ _"

.o

K. Nehon

Space Station Freedom

Program Office
:3 of 20

1=1

rl

-J
!!1

i!1
_1

.J
W,

W'
-J:

;

!

p

o

A

g

,,_ "r'

0 '_
IX
ft.

m
D

.J

i.1..I
_n

m
m
B

.J
1,8,1

I,i,.i
-I

q_
cO

0
0

Z
_J

A

£3

unn
0 U-

X
mmu_

0

!

._1

1.1..I
_n

R. Nelson

Space Slalion Freedom

Program Office

4 of 20

m

b-
<
N
m

<
re
<

W

tU
re
m

O
UJ
rr

m

UJ

<
n_

O_
W

m

O
rr
n

W
m

_J
m

.J
O
a.

b-

z _

_O
uJ

t_rr

u._j
O
_W

u_
m

..J_j
ujm

w_

A
A

s._

m
e_

O
E

e"

s_

O
_ss
v

(/)
I-
(J
.<
n-
I--
Z
0
0

W
=i
m

rr
I1.

_Z
W'-

<{m
rnl..
r.. z
_DW
,-:S

I1.
0_

l l

I--
Z
W

LU
n-

0
W
r_

W
Z
.-I
W
C_
<
m

"0

LU

m m

I-U.I

W

..1_.

| |

Z

I--
Z
W

W

0
W

LU
r_

0
C_
._1

LU

I--
Z
I11
=S

0
..I
I11
>
i!!

n-
O
IL
U.I
(/)
(/)
IL
O
U.I
(n

0_

C_
0

Z
LU

R. Nelson

Space Stalion Freedom

Program Office
3 of 20

0 G) 4.,

muJ _

• _ _ _ _ _.

EQ _

_ E_• _ '_ _:._- _ ® ®_-_ _ ®®

_ o _e (. _ .'-__ _® _ ®_-

•"_o _ c®

_ _ _ _° _____-=_. ,. o. __
/ | | II II

r-
4)
E
4)
I1,..

m

::3
O"
4)
k,.

4)
0

!--

¢)
u

0

q,m

"0
r-

4)
I.,.

m
.m

LI.

I e | !

R. Nelson

Space Slalion Freedom

Program Office

6 of 20

o

0

Z

c-
o
im

N
m
I
ol
ll,.J

A

ill
¢/)

41

E
C
0
i_
em

i-
Iii

i._

0
et
G.

(/)

im

ch

o

o
U.
(/)

Z
rn

R. Nelson

Space Sla|ion Freedom

Program Office

7 of 20

¢{ _ ¢g ¢{ ¢t
0 0 UUU 0

i i ._._.=" i

W

el,,

R. Nelson

Space Station Freedom

Program Office

8 of 20

o

0
u.
o')

o.
Z

111
r_

°0 ._

I011

I m I

I @

IU

R. Nelson

Space Station Freedom

Program Office
10 ol 20

ll,

>
ott
U

2
-!

UL

OI

R. Nelson

Space Station Freedom

Program Office

11 of 20

POTENTIAL

SYSTEM / SYSTEM SOFTWARE INTERFACES

= WP / WP SOFTWARE INTERFACE

X = SYSTEM / SYSTEM SOFTWARE INTERFACE

CCS
10/17/89

R. Nelson
Space Station Freedom
Program Office
12 of 20

ORIGINAL P"^_ :_

OF POOR QUALITY R. NeLson

Space Station Freedom

Pro_am Office
13 of 20

R. Nelson

Space Stalion Freedom

Program Office
14 of 20

o
+

P

O

m

II

l--
Z
uJ

uJ
0

K. Nelson

Space Station Freedom

Program Office
15 of 20

I-
Z
UJ

_)
U')
I,Ll

(/)

(n
n'-

u'3

§
0
Z
LU

0

o
0

L_

0

E
e_

m

L_

!

e"

m

r-
em

O.
0

0 0 0 0 0 0 0 0 0

R. Nelson

Space Slation Freedom

Program Office

16 of 20

o_

o

o

Z
a_

ill

t-

t2J
rr
0_
rr
Ill
rr

Y:

8

O

o_

rr

°

O_ v'- kt-

_o

o_

8
,.e

IS
u

.-J

..J

t_

O_

v-

¢.D
Q
O

e0
m

A

E

c-

o 0 0

,3 0 '3 ,,

m " _ B

R. Nelson

Space Slation Freedom

Program Office
17 of 20

am

X

Nm

.J
V

.C

==

N_

O
03

.C

iI
m

g.

A

im

X

.C

0m

rr
V

em

Nm
8m

¢-

"O
m

u

s_

t--

U

¢n
m

U
03
U
Nm

O

E

Z

Number of CSCls

O O O O O
O I_ O lid O

A

I-- v

Um

U O
03 ._
U o)

J=

O
L_

O
U

O
Lr_

aJBM|JOS peJe^!leQ(ooo)

0

m

m

AON

J

O

"r"

]sn6nv

_elN

JelN

09(]

"----88 JelN

lesodoJd

0

R. Nelson

Space Station Freedom

Program Office

18 of 20

R. Nelson

Space Stalion Freedom

Program Office

19 of 20

0

cn

_oo

L_
rJ)

R. Nelson

Space Slalion Freedom

Program Office
20 of 20

"SOFTWARE SUPPORT ENVIRONMENT (SSE)

PROGRAM STATUS"

F. Barnes, Lockheed

5798

m

O
IX.

_=

ILl

,¢

,¢

,¢

e_
Z

O

LLI
tlJ
ft.
u_

O
m

.¢

tlJ
O
.¢
IX.

A

Ill

ILl

O
ft.
m

ul

O
IX.
IX.

ul

It.
O

LI.I
O

Ill

_i
.¢

O

.¢

t_ uJ

O
Z

F Barnes

Lockheed
1 of 28

(n
u.i

z
W
_1
..I

2=
(.1

a
Z
<:

U)

I-

I--
U)

U)
p-
Z
UJ

Z
0
(.1

U.I
_,1

W
2:
0
(n

I-
0
ILl
,...j
0
n-
il.

ILl
(n
0')

w

Z
IJ.I
..I
...I
,,=:
2:
(J

I-
Z
ILl
C.)
W

UJ
=S
0
(/)

u.
0

.1
m

W

.1

Z
ILl
--I
--1

0

Z

0
0
a.

z
,<

Z
111
E
IT"

0

F. Barnes

Lockheed

2 of 28

CJ

,,=,
m
+
m
o=
rl

or)

P,

"z

P=

o+
:=i

m:

oooBoommoooo_oo
J I

I I

_ :>:< :+++:.,:,

1_ ::: I Ib : !
:_i 10S Im

#

..: i(| -I'
+

r-

5

iiii_!ii/¸

_ .E E

+ , _ ,.,, :O.oc=C.+
, , I-- W • a:-;

, , _,,__, p

i
+ I

, , ;:- , -- ,
, , m E p_ _ : . _ _
J ! (_ vo f,.) t"- :0 :,]: :

P ' t" - <D _ IX : _ 41

+._ _+_. II i 411 _` _ ._ i_ =-_ I

,' i.,++ ,';"-g............. _...........
' ++.'+_:_ +. = ++

(,,,) _ "J 0,) ,5,

t !

+ , IQC_ _- ,
OW m

, ! '_ , m" _. ..
|

4 _ I {,-- "o r.. '_ ,

,E ' -_+_ " " - __ . _ ',_ , _ _._ __ ,
E

m-m ---== _'_o+ ==_ ,_>" ,," ,_'
¢)

i t i

+++"++i i:_ _L E _ _++
-, _ P+ .+ o ,+ . _.

o

E
I=..

it.

=i ..i= c __

4_ I= 1= t

"-"-®_E': |i!
ill _ l.l, w --
--+ m u cO' o ,',O

--_ -O. EeS c °_._a
._,,_O-o¢o p=

• • .;, + • _

P r"

#

+(3,.
i,

r.o.......

e i

i l

i

iE
E
O

i

i

i

i

+

i

i

i

i

i

r

i

+

i

i

i _

O

ORIGINAL PAGE IS

OF POOR QUALITY F. Barnes

Lockheed

3 of 28

4 of 28

W

0
Z
LU

==J

=r,
o

Ch
Z

I.-

I--
t_

U.l_

>LI.I
"Oh

C_W
Zl-.
._U.l

..=I
..= O.

coo
..JO
I.I.I

_l(n

'_OC
z o

=r

I-= ..I
Z nl

Ill
0"I=
zo

ee

'_ 0

_W._l

I_ a,, I--

Z
_W

fflffl

_Z

0 _

I_. n_
.0

Z z

I,U nl

!..-0
OZ

I

ILl
I-' Z
"I=7=
OZ
0c 0

,,In..

_u.

u.I z
•I= 0
I-- .--

I--

_.Z
_.1 :::)
0co
OH-

..I
U

F-
LU
Ch

U.
0
..I
LU

LU
..I

LU
T"
I.-

ILl
C_
m

0
n-
O. OC
I-.C_
Om

>=_
-IZ
=.1 _D
'_0
Zl,I.
0>=

Z-.I

Z_
>.,

>,.
I.-

Z

0
0

LU
.I=
)==

)==
LL
LU

)==

uJ

OuJ

_Ch

_Z

ZZ
0 _
O>-

_Z

F. Barnes

Lockheed

5 of 28

5

_[
°o

OC
W

W
(3

OC
0
b-
OO
m

• @ • • • • •

F, Barnes

Lockheed

6 of 28

O_
Ill

Z
U.I
.J
--I

"I-

Z
<C

U)

<C
k--
(O

LU
mmm

LU
rr

;[
0
b-

Z
UJ
=S
I.IJ
..J
ft.
=S

=S
W
!--
U)
>.

(3)
(3)

I1_
0
LU
(O
U)

;[
0
U)
m

(O

0
0
I.I.

A

0
O)

-r

::)
0
rr.
-r-
!-

(3)
CO

V

(O
"I-

;[
0
=S

rr
UJ

0

(O

u.I
m

I.U
rr

(0
0
..J
.-I

^
|

.-I

UJ

U.
0
.,.I
LU

W
.-I

F. Barnes

Lockheed
7 of 28

¢.D

Z
,<

01-

y
r°° , ---.i_Z

,.,,,. 71 / _o° ,_ -:ii_ "" _
'(_ u')--'" :_ _ .'"

(3>" __,k," _ ,...,m" 0 .::O _ o_ n-
_-a <-- __ _> ::::UJ -_ --

,=--7 _ = ::::_ ,-,
.___ _ ii!!o -

(/) Z :_" ::::

<>'i ::::::::::" ,,ii

<Z

<z _

if)
u_<

o_ _

_jZ
=<

0

Z

,e..u). _._
u)_ y_,,-I< _ ,

"'J _, ,2_ .,,_1LU c'_

_iI. 1 ! _ i l--Z" I%I ! , (_,-,-,_ /

_ z
>. _

_ w
Z

InnlnTIll |lint -_

iiiii!iJii;"'"'

,

k

uJ

F. Barnes

Lockheed

8 of 28

r_

0
I.U
.-j
0
rr
n

iii

)-

Ill
¢/)
¢/)

U.I
¢/)
¢/)

Z Z

<

CO
uJ
rr
<

,h
0
¢/)

<

J
r_

F. Barnes
Lockheed
9 of 28

G

rr

LLi

O9
LLI
O9
O9

Q
Z
ILl
C_

rr
_D
13.

LLI

Z
O

.J
mmlm

O9

immm

z :E "!" :E
0 w 0 0 ::)
0 _ 0 • • • O9 CO

F. Barnes

Lockheed
10 of 28

G
Ill

8
rr
n.

Ill

_ _ w _

8__ _
m w

Z W
0 _ _ _

0

0 a

F. Barnes

L,ockheed

II of 28

F. Barnes

Lockheed

12 of 28

LIJ
=,_
0
nt.
12.

14J

>.
U3

LIJ

(1)

u.-l-

F. Barnes
Lockheed
13 of 28

P. Banes
L_khu_d
14 of 28

1,1,,I

_3
n"
13,,

i,1,1

>-

ILl

®'_

"- _ C
0 u)_,

G) a) a)

/'

F. Barnes
Lockheed
15 of 28

F, Barnes

Lockheed

16 of 28

a= --" m SYSTEM PROJECT

ADA BASE AND CROSS-COMPILER
EVALUATION REPORT

RATIONAL

VERDIX ALSYS INTERMETRICS
TELESOFT

s

ALsYs

VAX

#

t

TELESOFT

RATIONAL ° •
• #

s s

RATIONAL '

•#

RATIONAL

#

ALSYS

YS

VERDIX

B

ALSYS

MERtDIA NUS

MERIDIAN

ALSYS

t

TELESOFT

i

F. Barnes

Lockheed

17 of 28

F. Barnes

Lockheed

18 of 28

i

W

O_
I

0 k12

1°
0

n

F. Barnes

Lockheed

19 of 28

0
rr
/3.

It/

Or)

LLI

J.l
mm

m

O)

LLI

o

uJ

r-

c/)

o
co

0

C_

c/)
Q.

co

F, Barnes

Lockheed

20 of 28

F.Barnes
Lockheed
21of28

o
:S
u.I
I--
Or)
>.
Or)
uJ
or)
Or)

F. B&mes

Lockheed

22 of 28

=o

Z
0

Z
0

Z

rr
I,I.I
I--

Z
o

tl.l
_J
...I
(3
0
tl.l

I w
m

rr
b-
Z
I

I
Z
0
Z

F. Barnes

Lockheed

23 of 28

F. Barnes
Lockheed
24 of 2P

n_

>.
or)
ILl
C_
Cn

ORIGINAL PAGE IS

OF POOR (_JALrrY

F. Barnes

Lockheed

25 of28

ORIGINAL PAGE IS

OF pO0_ QUALITY

F. Barnes
Lockheed
26 of 28

.1
D

r_

0
0

P

0
Z

_D

Z
0

W

0
I.-

..1

u.I w

0

0

I,-

F. Barnes
Lockheed
2? of 28

b-
O
LU

O
rr

ILl

LU
O)
O)

rr

C/)

--I

Z O
_o o
F.. I

>

u. m c_0 :_ w 0 -- z
_" 0 o a..
Z 0 ZLU

|

-- IZ0 Iz:._l 0
U.I Ill U.
> -- a::
I,U II: I,U
a _ a.

I,U
0
0

0
ee _
a. w

z
0
I-

_1

0

I
if)

0

_1
Ill

0

F. Barnes
Lockheed
28 of 28

SESSION 2 -- CENTER AND PROJECT ACTIVITIES

Session Leader: M. Stark, NASA/GSFC

Ada in the SEL: Experiences with Operational Ada Projects

E. Seidewitz and M. Stark

The Application of CASE Technology and Structured Analysis

to a Real-Time Ada Project

S. Cohen

Ada at JPL: Experiences and Directions

T. Fouser

Ada and the OMV Project

W. Harless

5798

"ADA IN THE SEL: EXPERIENCES WITH OPERATIONAL ADA

PROJECTS"

E. Seidewitz, NASA/GSFC

5798

0
Z
__]-

LO rr _
rr LO -o

_ I.I.I
0o.

--coo

N
0

w 0
r7

n
w

a
z

0::

_J
W

0

0
11.

0

O0

Z

E. Seidewi|z

NASA/GSFC
I of II

0

c_
CO

E Seidewitz

NASA/GSFC

2 of 11

W
7-
I--

0
0

0

_n

E. Seidewitz

NASA/GSFC

3ofll

0

m

0
m

_1
I1_

m

i--
0
I11
.--J
0

.<

O.J
III cJ_
_v

uJ_

C/)/'

v,/Iil j

vw_

W

i--.

a
rt"

m

UJ#'%

I.IJ '_.._.

¢,.)

"0

U.I

121
Z

m

m

uJ _

I.L,I U,) '_ _

o_

m

0

cO

(D

It')

0

E. Seidewitz

NASA/GSFC

4of 11

0 0 0 0 0 u_ C) u_
cO c_ ,'- c_ T- .,- d

0
<
0. 0

F,-

r_

E. Seidewitz
NASA/GSFC
5of 11

o

o

[

"i
°1

°E
kVG/OO-IS

or)

,,-d,

>

2

g
g
(.'3

o

Zo

m

l

Z

kV(]/S.I.N 3 I/_3.!.VlS

.to

(/3

,,-fi,

>

,,=,

=<

2

g
a
i.iJ

o

LI_

g
0

tn

E. Seidewilz

NASA/GSFC

6of 11

LO
a
O
O
rr
O
b-

I

I

O_

a
o
o

a
z

z
co

(/)
b--

Od

O
rr
{I.

u')

O
O
ym

_E
11_ D_

o

_ Wn"

0
0

I
O

I
0
GO

0

0
CID

cO

I
0

35n3w _o

OJ

tO
CO

0

3sn3w %

I

0

0

°
0

0

OD

W

_0

OC

U_

o
Z
o

rr
uJ
r7

OD

rr

OD
CD
w
G_

O_

W

W

W

g
0

00

E. Seidewilz

NASA/GSFC
7 of II

0 C) (_ 0 C) 0 0 (_

en

E. Seidewi_z

NASA/GSFC

8ofl1

S

_O--
_w

W 0 _

g_88

0

0

0

l'n

E. Seidewitz

NASA/GSFC

9of 11

a
uJ z

Q

O
D,-
0,I
n_

E. Seidewilz

NASA/GSFC

lO of |1

• • • •
O

q
0

E. Seidewitz

NASA/GSFC

11 of 11

"THE APPLICATION OF CASE TECHNOLOGY AND STRUCTURED

ANALYSIS TO A REAL-TIME ADA PROJECT"

S. Cohen, GE/STGT

5798

The Application of CASE Technology and Structured

Analysis to a Real-Time Ada Project

Sara Cohen

General Electric/STGT

P.O. Box 8048 - Bldg. 25, Rm. 22S05

Philadelphia, PA 19101

Introduction

System requirements analysis frequently poses a challenge to a project development team.

Traditional life-cycle methods used to analyze system and software requirements often re-

sult in lengthy text without graphical representation. This documentation is difficult to

modify and check for consistency. The use of Structured Analysis (SA) has alleviated many

of the disadvantages associated with traditional system and software requirements analysis

methods. System and software requirements analysis using SA techniques is more com-

plete, easily understood, precise and comprehensive. Benefits of SA are apparent in the

System Requirements Analysis/System Design and Software Requirements Analysis phases.

The experiences of the Second Tracking and Data Relay Satellite System (TDRSS) Ground

Terminal (STGT) project to date have shown that the benefits of SA can be realized as

far into the project life-cycle as the Detailed Design Phase. This paper will discuss the

requirements analysis methodology exercised on the STGT project, as well as its benefits

into the Detailed Design Phase.

Background

The Second Tracking and Data Relay Satellite System (TDRSS) Ground Terminal (STGT)

is a real-time project which will contain over 450,000 lines of custom executable Ada code

and approximately 2,000,000 lines of Commercial Off The Shelf (COTS) software. It pro-

vides the National Aeronautics and Space Administration (NASA) with tracking, telemetry

and command of the TDRS, and high quality data communication service to the user com-

munity. The STGT mission requirements include implementing NASA's allocation of _w-

tem resources, maintaining high quality forward and return links, providing _x_tem l_,fl,wn] -

ance and status data to the Network Control Center (NCC). and providing effic'i_,nt _,r,,un_l

station maintenance to meet the high quality and availability requiremenls _I the, ST(IT

users. STGT will provide high operational availability to the user conlmL, nit_ xvilh le_ lhan

fifty-five minutes down time per year (no more than I0 seconds at a lime). A distribuled

architecture and multiple Computer Software Configuration Items (CSCIs) are employed

to facilitate development, flexibility, maintenance, documentation, and control of the soft-

ware necessary to operate and maintain the STGT.

S. Cohen

GE/STGT

1 of 24

Upon completing successful project reviews - a System/Subsystem Requirements Review

in March 1989 and a Preliminary Design Review in August 1989, STGT is currently in tile

Detailed Design Phase. Software developers are identifying units according to DoD-

STD-2167 and producing Ada package specifications and Ada Program Design Language

(PDL). Subsystem Critical Design Reviews are scheduled to begin in January 1990 with

the infrastructure CSCIs and continue through April 1990 for the remainding CSCIs. A

system Critical Design Review is scheduled for June 1990. The Coding, Unit and CSC Test-

ing Phase will begin in January 1990 and continue through October 1990.

STGT's software development team currently numbers fifty-five. Eleven STGT developers

participated in an intensive Ada training program for one year prior to the start of full-

scale STGT development. During this training, they completed at least one Ada project

in technology directly applicable to STGT. In addition, they are experienced in the area

of large-scale ground station projects. These software developers were assigned to lead

the development of the CSCIs: All STGT software developers were required to complete

an Ada individualized training program which required at least eighty hours. This self-

paced program consisted of a multi-media curriculum including computer-based and text-

based training, lectures, and hands-on application. Many STGT software managers either

had previous Ada experience or completed the Ada training program. STGT software devel-

opment management recognized the importance of management, as well as individual con-

tributors, receiving software engineering and Aria design training specifically for real-time

systems. Additionally, STGT software managers attended Aria management training
classes.

Traditional Requirements Analysis vs. Structured Analysis

The early '70s introduced project management methods based upon models of the software

development life-cycle. This called for documents to be produced at specific points within

the life-cycle according to prescribed forms and standards or document content guidelines.

These methods stressed the capture of documentation during the development process, but

did not adequately provide for the continued usefulness of the documents. The specifica-

tions were often incomplete, inconsistent, incorrect and not always updated to reflect

changes made to the system. Lack of formality, resulting in inconsistency, and lack of main-

tainablity have been identified as the problems which have limited the effecti_ ene,_ nf Ihe

life-cycle based methods.

It was obvious that more formal methods than those mentioned abo_e \xcie ncuu_rx il

greater productivity was to be achieved. In the late "70s and earh "80_. more formal meihod,,

were introduced, most notably structured analysis and structured cle_ign. These metlaotl_'

shifted the emphasis from later phases of the life-cycle to earlier ones. lVlore time should be

spent in the Requirements Analysis Phase, as well as the Preliminary and Detailed Design

Phases. Less time and money would be spent in the Coding, Testing and Maintenance

S. Cohen

GE/STGT

2 of 24

Phases, since errors would be detected at the earliest possible time. Implementation would

be easier and the resulting software would be of higher quality.

Tom DeMarco is credited with popularizing structured analysis. He explained that through

the use of data flow diagrams and descriptions of data (i.e. data dictionary, process specifi-

cations and decision tables), one could build a systematic description of a system's logical

(functional) and physical (implementation) aspects. Management could control the activi-

ties by conducting walkthroughs where data flow diagrams, the data dictionary, process

specifications and decision tables could be manually validated. The data flow diagrams and

tile data dictionary became system document deliverables. According to DeMarco, if the

person performing the structured analysis is doing so correctly, the structured specification

would have the following qualities [1I:

1. it would be graphic. The data flow diagrams would present a meaningful, easily

understood, picture of what is being specified.

2. It would be partitioned. The processes depicted on the data flow diagrams would

represent the basic elements of the system.

3. It would be rigorous. The data dictionary would provide a rigorous document of the

interfaces and the process specification would be rigorous as well.

4. It would be maintainable. Redundancy would be minimized and used in a controlled

manner.

5. It would be iterative. The specification would be shared with the user and modified

according to his/her needs until correct.

6. It would be logical, not physical. By eliminating elements that depend upon things

such as hardware and vendor, one need not concern oneself with changes in physical

thinking.

7. It would be precise, concise and highly readable.

Fulfilling these qualities, the structured specification would then exemplify the popular

saying "a picture is worth a thousand words". A system specification properly decomposed

into data flow diagrams would be more easily communicated than the traditional tonnage of

requirements documentation.

With the methodology in place, there was a need for tools in order to provk e atJtomation.

Without these tools, it would be less practical or economical to use formal _x ,lt'm d_.x,.I,,p-

ment methods. In the mid '80s, with the spread of desktop computers, a lechnol,,_) LI1,_\ n

as Computer Aided Software Engineering (CASE) was introduced. It x\a_ u¢,mpri_,ctl ¢_1

environrnents and tools which would allow the user to model a sxstern from its initial user

requirements through design and implementation. Tests could be applied in order Io check

for consistency, completeness and conformance to standards, In other words, these tools

would assist the user in expressing his/her structured analysis and design models. They

would not create the models for the user,

S. Cohen

GE/STGT

3 ot 24

Benefits of Structured Analysis During the Requirements Analysis
Phase

Given the complexity of the STGT, analyzing the system requirements was a challenge. The

NASA Requirements Specification for STGT was analyzed using Structured Analysis (SA)

techniques. Cadre Technologies lnc.'s Teamwork/SA® was selected as the CASE tool to

support the structured requirements analysis process. This selection was due to GE Military

& Data Systems.Operations' (M&DSO) business association with Cadre Technologies Inc.

Cadre Technologies Inc. is a large, stable company willing to accomodate M&DSO's needs.

Their products met M&DSO's key requirements, among which was the capability to support

multi-users and multiple platforms.

The system requirements analysis was rigorous, easily understood, precise and comprehen-

sive. The system model's data dictionary served as a basis for hardware/software interface

specifications. The system model itself provided a sound foundation upon which software

requirements analysis could be performed.

Applying the same techniques as were applied in the systems requirements analysis phase,

each CSCI developed a levelled model in which the requirements specific to the CSC! were

captured. The models consisted of multiple levels of data flow diagrams reflecting corre-

sponding levels of functional detail. Individual requirements were enumerated in the pro-

cess specifications, lntra-CSCI, as well as, inter-CSCl data flows were defined in the data

dictionaries. The use of Teamwork/SA®'s checking capability ensured that the data flow

diagrams were syntactically correct and that they balanced with their child data flow dia-

grams and process specifications. The software requirements specifications produced were

precise, concise and highly readable.

Teamwork/SA® did, however, have one limitation. Since the number of users accessing

a particular data base simultaneously was limited to eight, it was decided that each CSC!

would develop its own model. All of the CSCIs could not be accomodated in one data base.

This meant that each CSCI would have its own data base. All consistency checking between

CSCIs was performed manually. A manual procedure was used where data dictionaries

were merged and definitions were checked for consistency. This procedure, unfortunately,

was not 100% foolproof. An automated procedure would have been more efficient.

The software requirements models and data dictionaries provided for 80c_ of the _RS_"

content. Interleaf Publishing Software was used to produce the SRS documcni_. The pr, ,_lu_-

tion of the SRSs was enhanced due to the software utilities, commercial and in-h,,u_..

available to incorporate the Teamwork® models into Interleaf documents

Teamwork/SA® is a registered trademark of Cadre Technologies, Inc.

4

ORIGINAL PAGE IS

OF POOR OUALfl'Y

S. Cohen

GE/STGT

4 of 24

Software developers produced the SRSs using these tools, leaving the Technical Publications

group the task of merely applying cosmetic changes.These SRSs were delivered to the cus-

tomer at the System/Subsystem Requirements Review.

Based upon GE's initial Ada project experiences and modern software engineering princi-

ples, it was projected that STGT would spend 10-15% of its software hours in the Require-

ments Analysis Phase. In fact, over 9% of STGT's budgeted software hours were spent

performing requirements analysis.

The development of the requirements models produced some unexpected benefits. The

graphics depicted in these specifications proved to be an excellent means of communication

with NASA during the requirements analysis walkthroughs. They were equally helpful to

convey ideas or work out issues with colleagues, in addition, the data flow diagram models

served as good training medium as new STGT personnel familiarized themselves with the

system.

Benefits of Structured Analysis During the Preliminary Design Phase

The basic goals of the Preliminary Design Phase were to develop a top-level design for

each CSCI reflecting the requirements specified in the SRSs and to develop a lower-level

design for Computer Software Components (CSCs) which were identified as critical ele-

ments of the design. Critical elements were defined as those required at an early date for

the development of other CSCs, those having a long development period and/or those having

performance requirements that would be especially critical.

Employing an object-oriented design approach tailored to the needs of STGT, the first step

of preliminary design was to identify objects, physical and abstract, in the system. The

objects would contain state data and provide operations on that data. Object-oriented CSCs

encapsulated objects within a CSCI. Object-oriented design, however, had its limitations.

Concurrency would not be addressed until object implementation. Overall system concur-

rency would not be addressed and control was not obvious. In order to address these limita-

tions, process-oriented CSCs were identified. The process-oriented CSCs encompassed

major portions of the processing to be employed by the CSCI.

The identification of concurrent processes within STGT was based upon an "Edges-hi"

approach, where the processes necessary to control the external clevice_ were itlenliti_l

first. The rules used to identify concurrent processes were:

1. External devices: These processes were designed as simple dexkc

drivers to run at the speed of the device.

2. Functional cohesion: Closely related functions were combined into a

single process.

3. Time-critical functions: High-priority processes were identified due

to their time criticality.

S. Cohen

GE/STGT

5 of 24

4. Periodic functions: Separate processes were identified for periodic

functions to be activated at the proper time intervals.

5. Computational requirements: Low-priority processes were identified

for functions which were not time critical and often computationally
intensive.

6. Temporal cohesion: Functions performed during same time period or

immediately following certain events were combined into a single pro-
cess.

7. Data base functions: Functions which needed access to a shared data

base were aggregated into a single process with mutual exclusion as
the access mechanism.

With the design approach in place, the software requirements model was an excellent start-

ing point for the "carving process". Transforms and their decompositions were examined

with the rules described above in mind. Process-oriented CSCs were identified as a result

of this technique. Many of the data stores in the model were initial object candidates. Figure

1 illustrates the results of the "carving" process. The data flow diagram depicted is a high

level data flow diagram. This data flow diagram, in addition to its child data flow diagrams

were used to carve out the Ground Equipment object-oriented CSC, Perform Operator Initi-

ated Testing process-oriented CSC, Maintain Service Status Data process-oriented CSC,

Perform Faiiover and Automatic Fault Isolation process-oriented CSC, Monitor Ground

Equipment process-oriented CSC and Control Ground Equipment process-oriented CSC.

During the Preliminary Design Phase, two activities, other than software design, benefited

by the results of the Requirements Analysis Phase. A system performance study was con-

ducted and used the software requirements models to define transactions. In addition, the

software test group found that production of the software test plans was facilitated by the

clarity of the requirements.

Benefits of Structured Analysis During the Detailed Design Phase

Entering the Detailed Design Phase, the initial goals were to refine the CSCs, identify Ada

tasks and VMS processes and finally to select units, generate Ada package specifications

and Ada PDL. The role of the software requirements model was smaller than in the previous

phases. The models represented a solid understanding of time physical requirements. In a

number of areas, however, software developers felt time need to addres_ impIement_li_n

issues, prior to unit selection. This was satisfied by further decoml_o_in _ the ,l_ll_f, J-,.

quirements models. Again, the "carving" technique was emplo._ed. Dalz_ ,t_,rc, :_. _,'11

as transforms or groups of transforms were prime candidates for units.

Lessons Learned

To date, the STGT team, GE and NASA. feels that time requirements analysis performed

on this program was successful. There have been, however, a couple of lessons learned

from this experience.

ORIGINAL PAGE IS

OF POOR QUALITY

S. Cohen

GE/STGT

6 of 24

OF PO0_ QU_.Lt'I_ S. Cohen

GE/STGT

? of 24

The use of modern software engineering principles on a program
whose schedule has been set with the traditional emphasis of effort
in the later project phases (e.g. Code and Unit Test Phase) can cause
a conflict. Typically, in this situation, not enough time is allocated to

the Requirements Analysis Phase causing requirements analysis to be
continued into the Preliminary Design Phase.

It is not easy to separate implementation from requirements issues
when developing a requirements analysis model. However, when tie-
sign concepts are incorporated into the requirements model, the SRSs
have to be repeatedly updated during the course of the project to reflect
changes in the design! Additionally, as derived requirements are incor-

porated into the models, software developers spend much of their time
balancing the models. This interrupts precious time which could be
spent on design activities.

Conclusion

"Is SA suitable for an Ada project to be designed using an object-oriented approach?" is

a question often asked. The experiences of STGT have shown that using SA for a large-scale

Ada project resulted in a rigourous, precise and comprehensive requirements analysis. The

software requirements models were useful in many areas - directly and indirectly related

to the software development process. It is our feeling that the use of SA played a key role

in the success of STGT's requirements analysis. The effect of using SA was so great that

its benefits were realized into the Detailed Design Phase.

S. Cohen

GEISTGT

8 of 24

References

1. DeMarco, T., Structured Analysis and System Specification, Yourdon Press, New York,

1978.

2. Chikofsky, E.J. and Rubenstein, B.L., "CASE: Reliability Engineering for Information Sys-

tems", 1EEE Software, March 1988, pp. 11-16.

3. Booch, G., Software Engineering With Ada - Second Edition, Benjamin/Cummings Publish-

ing Company Inc., Menlo Park, CA, 1987.

4. Harmer, M.A., " CASE Tools - Productivity for the Masses", DEC Professional, December

1988, pp. 38-47.

5. Washenko, R.A., CASE Tools Evaluation, TIS 87CIT016, November 1987.

6. Cohen, S. "CASE - Methodology and Tool", Proceedings GE Software Engineering Confer-

ence, May 1989.

7. Nielsen, K. and Shumate, K., Designing Large Real-Time Systems with Ada, McGraw-Hill

Book Company, New York, New York 1988.

S, Cohen

GE/STGT
9 of 24

m e_l

0

__.°

r_

E o

-o • __
o __ a

m
M

_ walum

O
m

o ,_ .-_

o _ o ._.

_ mr,,,, 8

S. Cohen

GE/STGT

10 of 24

e-

n

_D

S. Cohen

GE/STGT

12 of 24

¢O

r-

i

i
J

II
I

i

I

,i

: ,:-"++,.+;'+ ++_
S. Cohen

GE/STGT

13 of 24

m

(0

_ ° _

s _ Ei
_W

_ _o

• .__ _ o_

_ Oo

S. Cohen
GE/STGT
14 of 24

tO

r"

em

e_

0

/ \

/
/

/
/
/
/
/

\
\
\
\
\
\
\

S. Cohen
GE/STGT
15 of 24

S. Cohen

GE/STGT

16 of 24

cO
r-

d
m

_D
,m

O

0

U

L

m

a

:e
E
al

S. Cohen

GE/STGT

17 of 24

0o

o

o

==_o =

o E EE®

=o_ o_._,_._=
=

t t o

S. Cohen

GE/STGT

18 of 24

o)

t-

= = cE

o

S. Cohen

GE/STGT

19 of 24

z

3 __o _ =

r-
_D

S. Cohen

GEISTGT

20 of 24

!

ORIG';.,\L PAGE IS

OF P_'.,'_'_#QU._.LITY

S. Cohen

GEISTGT

21 of 24

• c

b IX,

L.

.gE|
® "6

IX.

gs g

g,_. -°

S. Cohen
GE/STGT
22 of 24

i

6
O

i @ o_

._ _,,o o

I I _ I I II. IL

S. Cohen

GE/STGT

23 of 24

t-
O

o

S. Cohen

GE/STGT

24 of 24

"ADA AT JPL" EXPERIENCES AND DIRECTIONS"

T. Fouser, JPL

5798

0_
c-
O

CD

A

s...

_o o

n

O)

O)
y...

o_

e_
E

0
Z

"0

T, Fouser

JPL

1 of 12

O3

LL
-3
I--

W
e-
O

am

q)
tm

,m

a

"1o
e-
(g

w
Q
(.1
e-

tl
Im

Q
Q.
X
UJ

n
.-.j

!--
<

(a
"0
<C

A

A
(n

3

o o ._.
Q- = (/)0. a.
cn 3 T=

o _ 8
.- I-.

.__ _: == _(.1 ,,-,

E 2 - =
gm i_

-_ _., r_ _ -C U.
JO _ "-
0 _ Z _) (_

o rr _ _= <

u)
4)

Im

im

.>
(.1
<C

"O
<Z

4)
tm

U.

E
E
(/)

o)

T. Fouser
JPL
2 of12

W
e-
0

=mm

0
a}
s__

Im

"O
C
¢g

0_

0
e-

|i
I_..

q}
Q.
X
tU

ii

.J
r,

F--

"a

n

o)

v-

O)

"0

T. Fouser
JPL
3of 12

W
e-
0

ol
4m_

0
s._

im

"O
e-
ra
cO
Q

Q)
t_m

L.

0
Q.
X
UJ

"i
O.

I--

"O
<

Q.

m

T. Fouser

JPL

4 of 12

I--

e_

T. Fouser
JPL
S of 12

O_

t,

F-

W
c-
O

an
4,,,,I

O

!,._
in

C
¢¢

W
O
O

im

Q
es
X
KI

2J
n

I--

¢1

OO

O.
-'a

T. Fouser

JPL

6o[12

0

W

0
im

0

Im

"0
C
m

W

0
e..

im
i__

e_
X
W

Li

b-
.<
m
"o

! _ _i:o _

O.

m

T. Fouser

JPL

7 of 12

v-v-
tl

F--

T. Fouser

JPL
$ of 12

O_

I---

W
C
O

im

O
O
L-

"O
c-

O
O
c-
O

al

O
O.
>¢

I1.

b-
.<

"O
.<

A

0

m

t-
iI

¢-
,m

L_

0
,m

0
0

0
0

e,m_

0

O.

"10

T. Fouser
JPL
9 of 12

u.

T. Fouser
JPL
10 of 12

W
e_
O

sm

O
G}
L_

lu

"O
C

W
G}
O
e-
a)

=m

O
O.
X
LU

O.
-3

b-
<

"O

.J
n

l..- b..
Z Z
LI.I 14.1
:E =E
o. Z
0 0 "_
.=I n" C
LIJ -= 0

14.1 Z _I
14.1

0 ,:i.

< "I

(3

0

el

m
m

ft.

o
0

,<

,<

0

m

C
0

el

0
0

0

¢J

0
Z

Z
GO

m

0
.g

n.-

(_.

0
In
o4
^

:S
0
(3

LU

0

C

.m
tm

U)

=m

em

.m

(.1

E
im

|
n

t_

im

01
r-

=m

"0

E
"0
4m_

(n
o
E

r-

u)

u)

E
.i
4,_

|
m

t_

rr

4)
01

01
C

.0
E

!--

0

(3
C

.m

0

o_

U_
-)
I-

(3)
CO

"0

T. Fouser

JPL

II of 12

U.

b-

CO.o

._ "2 (-I

"i

-2

b-

{U

.J

"0

o,,,=,,, {_

O
s__

i.. w
o "0
co c
L_

CO
O 4.,
e
s._

...I
n_

s-

O

Q
Q
O}
{U

O1
C
{U

i

i

e_

m

n

t._.

G}
W

b

O

q)
C
0

W
m

W

E
0

C
0

m
m
u

C
0

im

N
lu

C

L.

0

8
0

Q.

cll

T. Fouser
JPL
12 of 12

"ADA AND THE OMV PROJECT"

W. Harless, TRW

5798

OMV Overview and Ada Lessons Being Learned

Walton Harless

Abstract. The Orbital Maneuvering Vehicle (OMV) project is involved

in the development of an unmanned, remote control, reusable

utilitarian space vehicle and the associated support subsystems.

The vehicle is to be deployed and recaptured by the Space Shuttle.

All functional requirements are derived from a set of Design

Reference Missions which describe a composite set of overall

capabilities. The development effort is managed by the Marshall

Space Flight Center with a launch date scheduled for late 1993. The

operational flight software and the ground control software are

being developed in Ada. These software systems are currently in PDR

phase. This paper discusses some of the Ada related observations
that have been made to date.

OMV Backaround. The OMV project is the result of a need to extend

the capability of the Space Shuttle to meet an anticipated set of

diverse requirements as they evolve for the Space Station and other

orbiting space platforms. There is an existing Shuttle capability

to place and retrieve satellites in low earth orbit. Servicing of

platforms and vehicles at higher orbits becomes considerably more

impractical or impossible. The OMV capability is responsive to this

need and the various OMV configurations provide a flexibility over

a wide range of mission requirements.
The OMV is an unmanned vehicle that is deployed from the Shuttle

and piloted from a ground station or commanded from the Space
Station. The vehicle may be configured to accommodate differences

in payload mass, mission length and mission duration. The OMV may

be space based for an extended period between missions and refueled
or serviced on orbit. Vehicle navigation is highly automated by

means of the on board guidance and control software and the mission

sequencing capability. The actual docking phase of rendezvous

operations is accomplished by a man-in-the-loop pilot that controls

the vehicle through a ground based pilot interface.

The ground station provides the pilot with mission critical data

and vehicle control in real time via the NASCOM link. The on board

radar information, position data and video image are displayed on

the pilot station chromatics graphics terminal. All other
information in the vehicle downlink is available to the pilot for

analysis. This data is also made available by the ground control

system in real time and historically for the various mission

support and monitoring functions. The actual real time control of

the vehicle is accomplished by the pilot with the custom hand

controllers and switches the comprise the pilot station controls.

Software. The two basic software categories for the OMV program

are the Flight Software and the Ground Software. The major portion

of flight software is that which resides in the OMV on board

computer (OBC) and it will be primarily Ada (95%). The remainder
of that which is called flight software is non Ada software and it

W. Harless

TRW
1 of 22

consists of the embedded OMV subsystem firmware and the control

software intended to reside in the Space Station computer network.

There are seven different software entities that comprise the

ground portion of the OMV effort. The software for five of these

areas will be largely comprised of that which has previously

existed on other related programs or was developed in prototyping

efforts early in the OMV program. These software systems provide

the flight planning, pilot training and much of the test and

integration capability. However, the actual Mission Operations
Software that will reside in the Ground Control Console is to be

developed entirely in Ada. Also, any additional test sets that are

to be developed for use with the Electronics Ground Support

Equipment (EGSE) will be written in Ada.

Of significance is the fact that the most visible and critical

portions of the OMV software are to be developed in Ada. These are

the Operational Flight Software and the Mission Operations

Software. These two subsystems complement each other as the air

and ground portions of the real time OMV capability. The flight

software provides the typical on board GNC and communications

functions as well as mission sequencing, status monitoring and

redundancy management. The flight machine is the CDC 444RR (1750A)
with a dual CPU.

The ground control software is to be hosted in the ground

control console (GCC) which is comprised of two VAX 3600 machines

that communicate with each other through a DMA link. In addition

to pilot display and control, the ground software will provide all

telemetry and command processing, data management, operations

control and data analyst services.

OMV Ada Evolution. The conclusion of a programming language

evaluation study during the proposal phase of the OMV project

stated that Ada was the most suitable high order language

(independent of hardware and other considerations) when compared

to FORTRAN or JOVIAL. However, at the time of the original study

(1984), additional selection factors such as existing hardware

availability, software development environment maturity and the

existence of "reusable" FORTRAN code for implementing OMV

algorithms were enough to tilt the scale in favor of a FORTRAN

implementation for both the flight and ground systems. The existing

FORTRAN implementations of closely related algorithms and test

systems represented a considerable amount of cost savings in the

overall developed system.

Nevertheless, by joint agreement at the beginning of the

contract, the suitability of Ada to the OMV project was to be

reviewed. The continuing evaluation strengthened the original

conclusion that Ada best met the language requirements for both

ground and flight software on OMV. Then in an OMV language trade

study released in March 1987, a revised conclusion stated that Ada

was not only the best choice, but that no other language offered

a defensible alternative for a development effort whose anticipated

useful life extends beyond the end of this century. The maturity
of the available support had progressed to a very credible stage.

The availability of Ada experience and Ada training also looked

attractive. With emphasis on the fact that Ada was the language of

choice for development efforts of significant expected life span,

2
W. Harless

TRW

2 of 22

the decision was made to implement the major development efforts

of the OMV project fn Ada. This meant that the Operational Flight

Software and the Mission Operations Software were targeted as Ada

development efforts.

Development Teams. The flight and ground software development

efforts are two distinct segments of the overall effort. It is

proper to describe them in different terms since they are separated

by geography as well as experience base. The flight team is largely

composed of personnel with extensive experience in real time flight

systems. The actual language experience is mostly assembly language

with a significant amount of non Ada high order language

experience. Before the OMV project, there was virtually no prior

Ada experience.

The ground team background contains noticeably more application

experience as opposed to real time development. The experience in

high order language is much more prevalent than assembly as well.

Most of the ground team had been involved with at least one

previous Ada development effort, although the software systems

produced were applications, software tools and environments.

All of development team members have been involved in extensive

Ada training. The types and amount varied considerably. There has
been a considerable amount of accredited course work as well as

various types of seminar involvement, in house training and hands

on experience.

Significant Implementation Factors. There are several factors that

are a part of the OMV program by design that are noted at this

point since these factors have a significant influence on Ada

experiences thus far. Observations concerning the Ada experiences
are made with these factors in mind.

1750A Flight Machine Architecture. The originally intended Litton

4516 target machine selection virtually eliminated Ada from

consideration due to lack of availability of an Ada tool set. At

the time of the post award language study, there existed at least

four validated compilers for the 1750A and three others were to be

validated shortly.

VAX/VMS Ada Development Environment. The VMS Ada environment is

the system of choice as the development host for both the flight

and ground software efforts. It is generally agreed that VMS is
one of the most mature environments available for Ada development.

TLD Toolset. Of those systems available, the VAX/VMS hosted version

of the TLD cross compiler and toolset was chosen for the flight

software development effort. The factors in the decision involved

the existence of the TLD Interpretive Computer Simulation for the

1750A architecture, the proximity of the TLD (Terry L. Dunbar)

Corporation to the development effort and the reasonable cost.

Prototyping/Benchmarking Exercise. The decision to acquire the TLD

toolset provided both a motivation and opportunity to perform a

comprehensive set of prototype/benchmark tests. These tests were

to evaluate the efficiency of the TLD toolset from an operational

W. Harless
TRW
3 of 22

point of view and to evaluate the efficiency of the code generated

by the compiler for each language construct. Also, the benchmarks
were used to evaluate the TLD 1750A simulator and run time kernels.

The results from this effort were captured in the Software

Standards and Procedures Document for the OMV project.

Prototype Conclusions. The overall impression of the TLD compiler

is that it is very efficient and reliable. The compiler is

intelligent in optimizing source code into efficient object code.

There are problems and needed enhancements, but no show stoppers

and the support from the vendor has been extremely responsive. The

development environment is reasonable for developing software for

a generic 1750A architecture. There will be enhancements required

in order to emulate unique characteristics of the actual target

machine. Basically, these enhancements are in the areas of

simulating the timing and memory conflict associated with a dual

CPU, more flexibility with regard to interrupts, a more

representative I/O system and provisions for input to the 1750A

simulation from an outside program.

The implementation of several Ada constructs were judged as

inappropriate for use in the flight system. Generally the

associated expense of such structures was cited as the offending
characteristic. A detailed list of these recommendations are

available, however the more significant constructs to be avoided

appear to be the tasking, variant record, private formal parameters

in generics and access types.

In general, any constructs that utilize dynamic memory

allocation are not regarded as desirable in the flight system

software. Reasons for this go beyond the concern in terms of memory

and CPU expense. Of significance is that it is desirable for

program execution to be deterministic for verification purposes.

It is also desirable for memory to not be dynamically allocated so

that everything in memory can be in a known location for telemetry

fetching purposes and to accommodate on orbit patching.

Observations to Da_e. The VAX/VMS development environment for both

the flight and ground software systems is performing very

satisfactorily. The ground team uses as a basis for comparison

their prior development experience in a number of environments

including the Alliant, SUN and various PC hosted environments. The

compiler and linker are very efficient and reliable in terms of

user interface as well as the generated code. The symbolic debugger

is very mature providing an extremely useful run time environment.

The CMS provides a flexible library system that tracks the various

modules and their change history, enforces user control of modules

and provides group and class operations.

The eventual porting of software to the respective target

machine is not expected to be an issue. In the case of the flight
effort, the executable image will simply move from the TLD

simulated environment to the target machine. The initial

impressions of the simulator have been that it provides an accurate

rendering of a generic 1750A target computer. Tailoring of the

simulator to more closely represent the actual flight machine is

expected to have been completed well in advance of the test and

integration phase. The relatively small percentage of flight

%V. Harless

TR%V
4 of 22

software that is expected to be implemented in assembly language

may be integrated within the simulator environment.

The ground software migration will be from an initial

development environment on the VAX 780 to an environment on one of

the VAX 3600 series computers. This move will be conducted when the
hardware is available in a timeframe well before the test and

integration phase. The experience of the ground team with porting
Ada source code between various vendors and models of hardware

indicates that this should be a relatively painless procedure

regardless of the development phase in which it takes place. The

ground control software is to be implemented entirely in Ada. The

only exception is the Job Control Language file that actually boots

the system.

The generally accepted view that the integration and test phase

of an Ada development effort may be significantly reduced in

comparison with the integration phase of other languages is

supported by the prior Ada experience of the ground software team.

The observations to date indicate that even with the very large

complex systems, source code that compiles cleanly will run

comparatively well the first time that it is integrated. The

problems associated with inconsistencies in definition and with

unexpected side effects are greatly minimized. The mature ACS will

eliminate problems associated with incompatible object versions and

compilations in general are simplified by the Ada packaging

concepts.

Observations o_ Constructs. The largest single factor in

determining the desirability of an Ada construct for a particular

application appears to be the maturity of the compiler and the

associated Ada environment. Currently, the second leading factor

is the set of constraints with the target system although the

importance of this may diminish as the Ada language tools continue

to mature and the hosting hardware improves. These trends would

tend to reduce the number and magnitude of target host constraints.

Finally, an increasingly significant factor is the experience and

training of the developers. As the tools and hardware improve, the

familiarity of the developers with the language becomes the

significant factor in determining the degree to which the Ada

capability is fully exploited.

For purposes of observation, consider that there are three basic

levels or categories that describe the usage of Ada constructs on

a particular development effort. These are: I) Constructs that are

avoided - a diminishing yet stubborn group 2) Constructs that are

applauded - those that are used universally throughout the effort
3) Constructs that are Contested - those for which no universal

opinion exists. The members of these categories for the OMV project

are determined officially and otherwise by the factors described

in the previous paragraph. A discussion of representative members

of these categories follows. The list is not exhaustive because,

among other reasons, membership sets continue to be dynamic.

In the category of Constructs that are Avoided, Tasking is the

most notable member. For the OMV, project the reasons are numerous

and typical. There is a considerable amount of expense in terms of

memory and CPU with all implementations of tasking. For the flight

software, there is a desire to avoid all dynamic memory constructs

W. Harless

TRW

5 of 22

and those that would prohibit a deterministic execution. At the

noise level, there is distaste for the fact that the

implementations of tasking do not resemble virtual tasks in many

respects.

Many constructs are applauded and for the reasons that were

intended by the language design. Most notable are the packaging

and information hiding constructs. Also the Ada exception handling

approach offers a very clean and efficient approach to anomalous

conditions. The concept of generic code is often applauded and

cited as having great potential in the reusability arena; however,

in the OMV effort and from experience, it would appear that there

will not be an overwhelming amount of generic code in the final

product.

Many constructs are contested for reasons ranging from

prohibitive circumstances to preference. For example, variant

records are prohibited in the flight code because the TLD compiler

generates a tremendous amount of control code. However, in the

ground control software, there are a number of message passing

applications that are greatly simplified with the use of this

construct. The Separate construct instruction to the compiler has

experienced difficulty in the early VAX/VMS implementations as well

as the TLD compiler. This may have influenced decisions to

eliminate large employment of this construct although temporary

usage of it during various development stages is quite common for

convenience reasons. Mandates concerning uniform usage of context

clauses receive mixed reviews from the developers. The trade off

is in the area of readability versus self documentation. The

relative merits of many other constructs are weighed in terms of

utility and readability versus perceived or actual expense. These

types of constructs include Arrays with initial values, IF

statements with compound conditions and Private types as formal

parameters in generics.

ov_r_ll Observations. The overall impressions with the Ada language

are extremely good. This is not unexpected considering that the

language of choice for the OMV project apart from non language

constraints has been Ada since the proposal phase of the program.

Experience since the program start continues to reinforce this

position. Some of the observations follow although this is not to
be considered an exhaustive list.

Prototyping. The prototyping/benchmarking exercise that was

conducted shortly after the Ada implementation decisions were made

produced a number of significant benefits. In addition to

identifying the constraints that existed for an Ada implementation,

the exercise provided an extremely good hands on learning

experience. A similar exercise should be considered in the early

stages of any Ada development task and especially where performance

characteristics of Ada for the particular target are unfamiliar.

Maintainability. The enhanced maintainability characteristic of

Ada is generally recognized. In addition, observations of the team

members from previous efforts as well as the OMV effort thus far

substantiate the opinion tha_ the code is inherently very readable.

The strong typing and information hiding characteristics of the

6 W. Hatless
TgW
6 of 22

language minimize opportunities for breaking existing software in

any modification or update process.

Automation. The opportunities for automation of project related

activities are enormous. The structured, coherent and consistent

nature of the language are of course intended to support a language

oriented tool set. Of particular note in the OMV effort has been

the favorable results achieved with the use of portions of the

ADADL development tool set. The developers have utilized automated

assistance such as cross reference aids, pretty printers and

requirements allocation trackers. The PDR documentation for the

flight and ground software PDRs was generated almost entirely by
the DOCGEN tool. The actual development environment of the average

Ada Compilation System (ACS) possess the capability to automate

compilations, provide class and version operations and generate

change histories. The availability of state of the art development
automation as well as commercially available software packages

appears to be guaranteed with the Ada language. For instance, the

OMV project is utilizing a commercial data base system (SYBASE)
server for all ground software data base related activities as the

result of an extensive trade analysis between a large number of

potential candidates. The selected system is a fast, mature and

reliable system that interfaces with Ada extremely well.
A final observation concerning automation opportunities in the

Ada environment concerns the capability for automatically generated

graphical representations of structure and control flow from source

code. Typically the Ada developers are very satisfied with Ada PDL

as a very reasonable and utilitarian representation of overall
structure and control flow. However, there exists at present and

for the foreseeable future a very significant demand for graphical

representations of the software for use in interface with

management, systems engineering and the customer.

7 W. Harless
TRW
7 of 22

B

UJ

O

O

Ill

m

O

i11

t_
"U

W. Harless

TRW

8 of 22

¢yJ

O_

¢;
¢ej

E

O
Z

=!
0

LU

0
I

LU

(D
I

rr
LU

LU

O

W. Hatless
TRW
9 of 22

W. Harless
TRW
10 of 22

E
U)

<

o
>.
o

,,=,

-- 0 0

_LLOUJ

=o. _ _z
._crr
"JI--

i_ I __ --_:ZOP

z

_ _, --__ ---I F-

-- 0 ¢_. "_c_

Zz_

(9 _
I I--Z_ _ I-- u_z

/ -r _ ... _- =E
------I (_ z _.._ o-, _<CE
/ ..=< E " o_0._.

u._j v _L BL .E _e'CE/ ..9 __=,,,
L __2_ __.I., o go

3

-__J Iz __ 0 _
,_ 0 'I(z_-
o ._ i:::E _ ,.,_o_
m,,, < z ._- n o1='-

_: / _ -_ I=-_

I I=_ -- I
o i _,_ I _

rn _I =_-= I e-'-,
i&l -- u- :_ ,_ :D

iiii!i_i_:!:_ _:iiiii!iii!:i!iii:_:!:!:_:!:iii!:!_ i _i_iiii]

,_ii_!_i',i':_._',i_,'_!_,i_i,::,_'_:_'::., o =!

W. Harless

TRW

11 of 22

OO

:3C
C_
,..I
LL

i--

C_

_C

I--
!1_
c_

LL
C_

._i
L,J

LIJ
..J

!

C_
I--

>.:';

e.-- (_

=E

1
I

I

>

i,.
X

J,

I.I.:
r-
D
:E

>-U_.

.,,'-
_--

P_

=

u'_
z

o
l,-

e_

Z
:3

0

z Z
__ <

z 0

c

l,,U

-- 0
C

.,J

0

ZC"-
Om

Z<u,_

.__=Z

--Z

r

tn

;CO
,,,__
u_.r,.

uJ

m

z
IJJ

z

z

z
=w

O0

°

.=

Z_Z

¢/)

h-

.J

ud

C_

z

V

.=
_Z_u

P,,
p._4{

_-__<

k-

C
U/

A,

..a
I--

z
(

C

I,-

laa

=E,

ml

_>1

W. Hatless

TRW

12 of 22

tx
c.,9

(J

ml

_.!

z

I--
U
z

I.i.

W. Harless

TKW

13 of 22

_0

W. Hatless

TRW

14 of 22

p. z
•I-- , , , , , :_

0
iiinm.j rr

i | | I | |

W. Harless

TKW

15 of 22

I,,I,.i
,,.I
0

I,,,-
0
I.LI

0

z
m Q

W. Harless

TRW

16 of 22

A

_b

in

_b
|n

_J

mlmm,

0

0
_u

n

_J

|m

m

b

0
|

¢;

0
_0

u

0
0

0

0
mn

n

UJ

W. Hatless

TRW
1"/ of 22

fJ)
Z
0
m

i-

0

| | |

0 0
LU , , , LLI

0 0

0

W, Harless

TRW

18 of 22

t...

O
q_

_O
re o
_r tD

.n" X
I11 CO O 'g

_ _ _8 >

,-, _E

__o_o _ _ 8

> z ''
O_ '_ oc 0 z
0 _). i=,= o= --

r=.=

r===

W. Harless
TRW
19 of 22

A

0
Ill
WI"

Ill

"0

!,.....

0
Ill

L_

l=
Ill

/

m
('4

W. Hatless
TRW
20 of 22

W. Harless

TRW

21 of 22

I.U
._1
rn

"0 n-
(1)

m
LU

e. r_
Ill

.4, >.
e- n-
O Lu
U >

I.U

0

W. Hatless

TRW

22 of 22

SESSION 3 -- SPACE STATION ACTIVITIES

Session Leader: D. Littman, NASA/GSFC

Lessons Learned: Prototyping with Ada for the Space Station Freedom Program

K. Rogers and L. Ambrose

Software Support Environment: Architecture and Design Overview

C. Carmody

Flight Telerobotic Servicer

R. LaBaugh

Lessons Learned in Prototyping the Space Station Remote

Manipulator System Control Algorithms in Ada

P. Gacuk

5798

"LESSONS LEARNED: PROTOTYPING WITH ADA FOR THE

SPACE STATION FREEDOM PROGRAM"

K. Rogers, MITRE

5798

LESSONS LEARNED:

PROTOTYPING WITH ADA FOR THE SPACE STATION FREEDOM

Kathy Rogers
Leslie Ambrose

The MITRE Corporation
1120 NASA Road 1

Houston, Texas 77058

ABSTRACT

Developing prototype soRware in Ada leads to some conclusions about the language as well as the
available methods and services. Results from this project address the use of the Ada language in a network
environment intended to emulate that which wiU exist onboard the Space Station Freedom. Conclusions are

drawn concerning the strengths and weaknesses of Ada for prototyping projects.

PURPOSE OF THIS PAPER

This paper documents the lessons learned as a result of building the Human-Computer Interaction Lab
fliCK,) Ada Executive fliAE). The HAE is a specialized program which obtains data from a testbed
network built to evaluate candidate services and resources that will be required of the Data Management

System (DMS) for the Space Station Freedom Program (SSFP). The HAE supplies data to the HCIL
Multi-Purpose Application Console (MPAC) prototype which evaluates the presentation of data and
information.

This paper is an attempt to glean from the HAE that information which may have applicability to an
audience larger than that which was directly involved in the effort. The experience of prototyping a
relatively small system in Ada, in a network environment, provided insight into challenges that might be

expected when developing larger software systems, especially those systems that might exist on the Space
Station Freedom. To that end, many details of the project's history have been omitted and other aspects

have been elaborated in a manner which is not in proportion to the actual effort.

This paper will focus on the process of developing the Ada production and test software that was used
as part of the larger testbed effort to evaluate various data services and resources l. After a brief history of

the prototype, this paper addresses the Ada and software engineering issues confronted by the prototype.

BACKGROUND ON THE HCIL MPAC PROTOTYPE

The electronic component of a workstation onboard Space Station Freedom is an MPAC. The effective
use of this instrument will be important to crew productivity. As such, the National Aeronautics and Space
Administration (NASA) wished to investigate the human factors issues associated with the presentation of
information on the MPAC. The DMS testbed at the Johnson Space Center (JSC) provided the necessary

resources and data for MPAC analysis as part of the System (OMS) Integration effort.

1 This project was done as part of contract NAS9-18057, project 3100K. This paper is a partialsummary of a
larger report, "Lessons Learned: Object Oriented Methodologies, Ada, The Dam Management System Testbed, and
Prototyping", JSC 23903, September 1989.

K. Rogers
MITRE

I of 29

The OMS Integration effort is an ongoing series of prototype demonstrations, focussing on establishing

interoperability between Space Station Freedom system simulations. It runs in the environment of the DMS
Testbed, which is based upon an Apollo token ring network with EthermL The configuration of the DMS
Testbed for OMS Integration Demonstration 3A is shown in Figure 1. System simulations are hosted on

MPAC J

Q NtIIe

®=Unit

DMS TEST BED
APOLLO

TOKEN RING

MPAC J

Figure 1. OMS Integration Demonstration 3A Participants

the various nodes of this network. It was in this environment that the HCIL MPAC Prototype was to

become a player, focussing on the data from the Guidance, Navigation, and Control (GN&C) node. The
OMS Integration effort represented a good source of realistic data which could serve as the basis for

analysis of candidate MPAC displays.

A User Interface Management System (UIMS) is a piece of software which facilitates the

development of consistent, effective user interfaces by providing development tools anda runtime
environment to present the products of those tools. The BLOX @UIMS is comrolled by nser-defined state
tables, which respond to interface commands by invoking user-defined programs. The combination of the
commercial BLOX package, its external tables, and the display process programming, will be referred to

collectively as BLOX.

The need for the HAE arose due to the fact that the services and resources provided by the DMS
Testbed did not match the needs of the BLOX UIMS. The HAE acts as a middleman, requesting data from

the DMS Testlxd network (in the proper format) and making it available in the proper format for BLOX.
Figure 2 shows the relationship of the HAE software to the other HCIL MPAC Prototype components.

@ BLOX is a product of Template.

K. Rogers
MITRE

2 of 29

Had the Testbed services provided a more tailorable, extensible interface, there would have been no need to

develop additional software.

TEKTRONIX

,/" \
Graphics Terminal

MICROVAX

._ APOLLO

DN3000
Network
Interface

Unit

DMS
TESTBED
NETWORK

To GN&C and
other nodes

Figure 2. HCIL MPAC Prototype Components

HAE OVERVIEW

The HAE is a relatively small piece of software, consisting of approximately 2000 Ada statements of
unique source code 1. It was developed under VMS ® 4.7 on a VAX® cluster, which included a VAX 785
and 8810. It was run on a MicroVAX®. The prototype configuration is depicted in Figure 3. Its
executable code occupies 95K bytes and the additional object file which is linked into the BLOX program

occupies 53K. No code metrics were kept during this effort, but an informal evaluation of libraries upon
completion revealed that approximately 6500 lines of test code had been written.

The HAE provides services to BLOX through a series of procedure calls. The interface was designed

to accommodate communication between two very different languages, C and Ada, and is simple and
straightforward as a result. The HAE services include 1) periodically gathering data values from the
network, 2) returning those values to the user, 3) returning the type and units of available data, and 4)

stopping the HAE.

The HAE performed satisfactorily in its intended demonstration. It handed data updates from the
network at the rate of 0.3 messages per second, where each message contained up to 48 data elements. The
BLOX system takes several seconds to update the screen. The HAE provides data values in approximately

1/4 second per query.] This is fast enough for the present application, since it is not a "hard" real time
system. The end user has expressed satisfaction with the system.

1 Reused software is counted only once, and software from outside sources is not counted at all. The statistics on
Ada statements were generated by counting semicolons which occur outside of comments and parentheses. The
overall statement statistics can be found m Appendix A.
@ MicmVAX, VAX and VMS are registered trademarks of Digital Equipment Corporation.
] This average is based upon tests using a test harness which accesses and printssystem time immediately before and
after issuing a call to the HAE.

K. Rogers
MITRE
3 of 29

MICROVAX 1
DMS
TESTBED

NETWORK

Legena:

I VAX services _ HAE Ada code
BLOX rautines DMS Ada code

Screen Definitions (C code) Tab(ee

To GN&C and

othor nodes

Hgurc 3. HCIL MPAC PrototTpe Software Architecture

The HAE has not been fully exercised, but so far has proven to be robust (i.e., it has not failed to

perform its intended functions). It was designed to support queries to multiple systems, but this capability
has not been exercised. The overall design of the HAE was found to be sound and resulted in a functional

product.

ADA IMPLEMENTATION LESSONS

One of the goals of this task was to gain some firsthand impressions of the Ada language. Since the use

of Ada has been mandated for the Space Station Freedom Program, the Spacecraft Software Division (SSD)

at JSC was interested in exploring software engineering and Ada. The observations of the language as an

implementation tool are presented in this paper 2.

The use of Ada for this project was quite successful. In many ways, the properties of the language,

particularly information hiding, contributed to the success of the prototype. The problems encountered do

not appear to impinge upon the usefulness of Ada as a software engineering tool or as a prototyping
language. They do have implications, however, for required tools, approaches, and support systems.

The remaining discussion on Ada implementation issues is organized into two categories: successful

aspects of our use of Ada, and areas which require attention in order to achieve positive results.

Successes

Ada proved to be a workable language whose use offered some specific benefits to this project. We had

positive experience with Ada in the areas of information hiding, readability, language-to-language interface,

2 Other issues such as object oriented methodologies, the Data Management System testbed, and prototype project
management are described in the full report, JSC-23903.

K. Rogers

MITRE

4 of 29

and tasking. We also found that performance was not a problem in this system. Information hiding and

readability were anticipated benefits of the language. The remainder, however, were areas where we were

initially apprehensive about success. Instead, we found them to be straightforward.

Ada's information hiding capabilities facilitated independent development of components. The first step

in the coding process was to formalize the design into Ada package specifications. The MITRE team did

modify these specifications twice due to changes in types, but the consequences were minor and limited

mainly to recompilation and linking. Eventually, a set of stub programs was created to allow unit testing.

We possibly could have enjoyed even more of the benefits of this feature of Ada by building these stubs

earlier in the project.

The use of modular specifications facilitated independent work, with each team member coding separate

units. Eventually these were combined for system testing, which worked surprisingly well. No interface

problems were encountered'which could he attributed to the use of Ada; rather, Ada greatly facilitated this

step.

The only interface problem was due to the use of integer codes to return error conditions back to the

BLOX program (e.g., 0=Successful, I=MSID_Not_In_MML). This resulted in fight coupling between

several modules because the information about each value's meaning had to be contained in each module

involved. This was a memory burden for the programmer as well. In an all-Ada system, this would have

been neatly solved by use of an enumerated type coupled with the use of exceptions and handlers.

The Ada code for this project proved to be readable, at least from the perspective of the team members.

We had one code review and several occasions where one member had to pick up the work of the other due
to absence. Our observation was that, even with minimal use of comments, the structure and purpose of the

code was accessible to the moderately informed reader. A strong reminder of this characteristic of Ada was

provided when we had to make alterations to the screen definition code for BLOX, which was written in C.

Minor changes proved to he a difficult undertaking. This comparison is somewhat suspect since neither

team member is an expert C programmer, but both had experience with the language and the advantage of

having reviewed the code with the author.

When formal prologues were included in the code, programmers making modifications were inspired to

record their changes. When there was no prologue, change comments were rarely added. Providing a
prologue at the beginning of the coding phase and contributing information incrementally was much easier

than recreating it upon completion of coding. Consequently, we recommend the use of prologues on all

files. As only a minimal amount of information was required, the sample prologue in Figure 4 could be
used as a basis.

Other prologue information, which could be part of the abstract, should include the performance

characteristics of the compilation unit (e.g., whether it was optimized to minimize the use of storage or

minimize execution time), and the effects of the use of the object (e.g., side effects, exceptions raised,

exceptions handled).

Part of this project involved an interface between the C andAda languages. The independent HAE
process wrote to and read from VAX VMS mailboxes. Ada procedures to access these mailboxes were

made available to the BLOX C program via the DEC-supplied pragrna EXPORT. This process worked

well, due to the hospitable environment provided by the VAX VMS operating system.

K. Rogers
MITRE

5 of 29

-- Package Name: <Ada package name>, <operating system file name>

-- System Specification:

- <hardware> rurming <operating system> <version/revision>

- Absu'act: <refe_ the design document section or page>

- <description should include discussion of object >

- <description of modifications should be added as needed>
- Author(s):

- <name> <affiliation>

--Modification History:
- Created:<date>

- Modified:<date(s)>

Figure4. Sample Ada Prologue

One minor restriction was found: only base types could be used at the interface of procedures to be
exported. Initially, we used restricted integer types which made sense from an Ada perspective, but which

caused errors when used from C. As a consequence, we had to modify some package specifications and

deal directly with DEC-supplied types for floating point numbers (i.e., g..float or h_float instead offloat).

This obviously impinges on the customary benefits of Ada: we suspect that such loss at a language-to-

language interface is inevitable. Where possible, such interfaces should be avoided in order to maximize the

benefits of using Ada.

Evaluation of tasking was not originally called out as an area of investigation within this project;

however, the design appeared to be most easily addressed using tasks. Each of the top-level, concurrent
objects could be a task, with its methods supplied by task entries. Overall, tasking worked well in spite of

our concerns that it would add a level of technical difficulty. We were able to consider each unit

independently, working from specifications.

We shieldedourtaskentrieswithprocedurecalls(Figure5).Unshieldedtaskscan be abortedfrom

anywhere withintheirscope,an undesirablesituationforourpurposes.The shieldingofferstheadded

benefitofreducedruntimcoverhead.Ifwc were requiredtoreducethecodesize,tbeabortsemanticscould

be removed fromthetasksemanticssincetheycouldnotbe used.The shieldingtechniquealsoallowedus

toreplacethetaskpackageswithnon-taskingdummy versions.Inthesedummies tbeprocedurecalls,

insteadofcallingtaskentries,merelysuppliedhard-codedvalues.Thiswas helpfulfortestingand

indicatesthat,had taskingprovedtobe a problem,we couldhave substitutedanon-taskingversionwithout

affectingtheremainderofthesystem.

Much has been said on the performance weaknesses of Aria. Our requirements were not strenuous, but
we had to provide adequate performance to update a display screen fast enough for a waiting human user.

We did not experience any performance problems attributable to Ada.

File I/O on the VAX was quite slow, but that is a characteristic of the system, not the language

implemcntation. For example, one procedure call causes the HAE to open a file, read its contents and create

some data structures. This is the slowest procedure call, taking approximately 2 seconds to execute.

K. Rogers

MITRE

6 of 29

°°°

package Master_Measurement_List is

.o*

procedure Supply_MSID_Spee(...);

oo°

end Master_Measurement_List;

°°°

package body Master_Measurement_List is

..,

task The MML_Process is

entry Supply_MSID_Spec(...);

°,,

end The MML_Proeess;

procedure Supply MSID_Spec(...) is

begin
Tbe_MML_Process.Supply MSID Spec(...);

end Supply_MSID Spec;

task body The_MML_Process is

select

or

accept Supply_MSID_Spec(...)
do ...

end Supply_MSID_Spec;

°°.

end select;

°°°

end The_MML_Process;

begin
null;

end Master_MeasuremenLList;

Figure 5. Shielding Task Entries

Areas to Watch

Support is critical to effective use of any new tool. Although both members of the development team
had experience in Ada development, neither was expert in the VMS environment. There were a number of

times when having an expert in the combination of Ada and VMS would have greatly facilitated the

development process. The usefulness to a project of one system expert should not be under rated.

K. Rogers

MITRE

7 of 29

Testing progressed slowly and a large amount of test code was generated, more than three times as

many statements as the product. The features of Ada which make it good for large, complex projects---in

particular, strong typing-- slowed down the testing process. Test scaffolding took longer to create than

was anticipated based on experience with other languages. "Quick and dirty" is only relatively possible

with Ada. Test programs must be carefully constructed: packages must be instantiated to allow debugging

print statements, types must be matched, values of records must be fully redefined with each change. This

rigor is arguably a virtue, since better testing programs might lead to a stronger product. However, the

additional time was not built into the schedule of this task. In a prototype, whose life span is expected to be

short, it is not clear whether this rigor is a net benefit. It is therefore important to manage the whole

process, planning in extra time and taking a more formal approach to testing than might otherwise be done.
In a larger project, success or failure could hinge on the creation and management of test structures.

A repository of existing Ada code was available for reuse on our host machine. The NASA Ada

Sol.are Repository provided for the acquisition and analysis of Ada software (developed by, for, and

outside of NASA) for possible distribution and reuse within NASA. Ultimately the software within the
NASA Ada Sofhvare Repository will be used to seed the reuse libraries of various NASA software

development efforts. Tools to qualify software items into the library, classify them according to their

projected uses, and retrieve them from the library based on the users' specifications are in the analysis and

evaluation stages. At the current time, the soRware carries no warranties because of the disparate sources of
software and the diversity of conditions under which the software may be used.

Although we encountered some difficulty, we did reuse two programs from the repository, after making
the minor corrections required to compile them. These programs accounted for approximately 7% of the

final product. Even with the searching, analyzing, correcting, and testing, this process was much faster

than developing the code. Providing libraries of reusable code is complex, but judging even by our limited
use of such services, it is a potentially powerful aid to programming.

Configuration management is another difficult task in software engineering. We used the VAX's file

numbering scheme coupled with named directories and paper records. Better configuration management

tools and practices would have been useful during this project, although we experienced no real disasters.
No code was irretrievably lost, but time was occasionally taken up in finding it. In short, we were

vulnerable to machine failure or human error at many points in the project. Only the stability and small size

of the design team, the relatively short development time, and a healthy dose of luck kept us from a major
loss of work.

We advocate almost complete avoidance of the USE clause in Ada. This clause, which allows the

programmer to reference parts of library packages without supplying their full names, leads to confusion for

anyone attempting to read the code. Our recommendation is based upon the experience of tracing references
to find the source of a certain type or procedure--a frustrating exercise. The DMS Services supplied on the

testbed include the Data Acquisition and Distribution Service (DADS) and the Network Operating System

(NOS). These services, used by testbed participants to effect data transfer, are supplied via a series of

procedures which may be incorporated into a node's code. The sample programs demonstrating the use of

these procedures employ the USE clause to the whole compilation unit and supply only local names for the

type and procedure names. Since ten or more libraries are imported by these programs, the programmer is
left with the options of examining the specifications of each to find the source of each type and procedure,
or of including all the referenced libraries in his/her own code.

K. Rogers

MITRE

8 of 29

There are very few, if any, good uses for the USE clause. Currently available pretty printers do not

provide the capability to fully qualify references, to our knowledge. Even if that capability became

available, it may still be inappropriate to use the USE clause because it can increase compile time for

resolving overloaded subprograms. Not only must a compiler find an appropriate reference (in terms of

subprogram name, number of arguments, type of arguments, etc.), it must assure that there is no other

subprogram that could possibly fit the profile. Therefore, it has to look at everything that has been

referenced by a USE clause.

Fully qualified names are generally straightforward and readable for procedures and data types.

However, they are less convenient for infix operators. In an application which requires an overloaded infix

operator (or whenever package names become cumbersome), the RENAMES construct is preferable to the

USE. For example, consider overloading the "+" operator for addition of two matrices. Direct referencing

of the operator is clear but awkward:

Result := Math_Routines."+"(Left, Right)

The renames construct, however, allows a more natural format:

-- declarative part
function "+"(L, R: SomeType) return SomeType renames MathRoutines."+";

-- sequence of statements

Result := Left + Right;

Additionally, only the "+" operation would be visible, eliminating the readability and compilation

problems within the scope where the "+" is needed. To make other subprograms visible, other renames
clauses would have to be used.

In a tasking program, robustness of tasks becomes very desirable. User-defined exceptions whose

handlers caused tasks to fail were difficult to diagnose and were removed from the final system. There was

no situation encountered in this project where failing was preferable to continuing to run, although one can

imagine a program such as a robot driver where the opposite might be true.

The experience base of users familiar with both VMS and Ada is limited, and DEC's Ada is not as
mature as some of their other languages. We encountered a number of areas where we were unable to find

other users who had exercised the capabilities we needed, particularly in the use of VAX system services.

At least part of these troubles can be attributed to our lack of experience with VMS. The DEC

documentation was a source of problems for two reasons: the necessary information was spread out over a
number of manuals (five in one casel); and the Ada documentation contained many inaccuracies. Needless

to say, this slowed down our efforts.

The VAX debugger changed the observed behavior of the system, particularly in matters related to

timing. Code compiled with the debug option produced different results from that compiled without debug,

even if run in the/nodebug mode. Fortran programmers report that this is a known characteristic of the

debugger, so this does not appear to be an Ada-only problem. It should be noted that, even with this

1 The problem was the use of mailboxes. The manuals were the following:. VAX Ada Programmers Run-Time
Reference Manual; VAX Ada Language Reference Manual; VAX VMS System Services; VAX VMS I/O User's
Reference Manual; Developing Ada Programs on VAX/VMS.

K. Rogers
MITRE

9 of 29

problem, the debugger was a useful tooL However, the confusing results combined with our unwise faith

in the tool slowed down the resolution of some problems. In this, and other implementation problems, we

found it helpful to use the technique of keeping a "lab book _ describing the problem encountered, steps

taken to isolate the problem, and the success or failure of each attempt. This book fostered deliberate

debugging_ actedasa communicat.iondeviceduringtheabsenceofa teammember.

Some apparently inconsistent results were obtained. One particularly annoying problem was the failure

of some code to "scale up". It seemed nonsensical to claim that the mailbox reads and writes world1 in a

small program but not when included in the whole system, yet that was the observed behavior. A

systematic set of tests finally revealed the culprit, as shown in Figures 6 and 7. Calls to the package

VAX_Mailbox__Services, which invoked VAX system services, failed when done from a subprogram

defined within the scope of the main procedure. The simple test program had its calls in .lineand therefore
avoided this problem. We are unaware of any place where this is documented.

In a process which uses tasks, direct calls to VMS general input/output system service routines $(210

and $QIOW from a single task result in blocking the whole process. DEC Ada tasking is implemented

using a nm-untll-blooked method. According to the VMS documentation, the system does not recognize

that the individual task is waiting and therefore does not allow any other task to run (Digital, February

1985). In order to avoid this affect, the user is directed to employ the DEC-supplied package

Tasking_Services which avoids this problem. An additional work-around is offered by the DEC-supplied
pragma TIME_SLICE. This allows the programmer to control the maximum amount of time given to any
one task.

SUMMARY

This project resulled in a working prototype which met its objectives of being a participant in the

OMS Integrated Demonstration and of providing a tool for examining data presentation issues. The HAE

software itself is a functional piece of software which could be used to attach another node to the DMS
Testbed, at least until the Testbed Services are upgraded in 1990. Any UIMS or other software which can

call Ada procedures in a VAX VMS environment could make use of the HAE.

In the process of creating one portion of the prototype, the HAE, lessons were learned on the

techniques and tools used to create the software as well as about the process of prototyping itself. Ada is a

usefial language whose benefits were clearly recognized during this project. Its information hiding and
tasking were particularly helpful: the use of Ada specifications allowed independent development of

packages, and the tasking model fit well into a design of independent functional units. Each portion could
be considered in isolation.

Some planning, however, is required to avoid potential trouble spots. The youth of the language

means that the support systems, both human and machine, are not as mature as is desirable. The availability

of good programming tools and of a repository of indexed and qualified reusable code would greatly speed

project development. Further, the aspects of Ada which are its strengths, such as compiler-enforced typing,
mean that quick and dirty development is only relatively possible. This does not mean that it is not a good

prototyping language, but the schedule impacts must be considered. A second prototype, implemented by

the same team, would undoubtedly be much faster to develop than the first.

K. Rogers
MITRE

10 of 29

--This program does not work.

with TexUIO;
with Starlet;

with VAX_Mailbox_Services_Without_Tasks;

procedure User_Mailbox_Manager is

package VMS renames VAX_Mailbox_services_Without_Tasks;

Receiving_Channel Starlet.Channel_Type;

Sending_Channel : Starlet.Channel_Type;

procedure Start_Mailbox(

From_BLOX

For_BLOX

Start_Stares

S_Mailbox_Status

R_Mailbox_Status

Sending_Channel

R_Channel : out StarleLOmnnel_Type;

S_Channel : out Starlet.Channel_Type) is
: VMS.HAE or BLOX := VMS.HAE;

: VMS.HAE_or_BLOX := VMS.BLOX;

:VMS.HAE_Stams :=0;--o.k.
:VMS.Status_Value := VMS.Success;

: VMS.Stams_Value := VMS.Success;

: Starlet.Channel_Type; --for Sending mailbox

begm
VMS.Create_Mailbox(

VMS.Create_Mailbox(

end Start_Mailbox;

For_BLOX,

S_Mailbox_Stams,

S_Channel); - for sending

From_BLOX,

R_Mailbox_Status,

R_Channel); - for receiving

bcgm
Start_Mailbox(Receiving_Channel,Sending_Channel);

end User_Mailbox_Manager,

Figure 6. indirect Call Which Fails

K. Rogers

MITRE

11 of 29

- This program works.

with Tcxt_IO;
with Starlet;

with VAX_Mailbox_Serviees_Without_Tasks;

procedure User Mailbox_Manager is
package VMS renames VAX_Maflbox Services_WithouLTasks;

R_Channel : StarleLChannel_Type;
S_Channel : Starlet.Channel_Type;

From_BLOX
For_BLOX
Start_Status

S_Mailbox Stams
R Mailbox_Stores
Sending_Channel

: VMS.HAE or_BLOX := VMS.HAE;

: VMS.HAE_or__BLOX := VMS.BLOX;
: VMS.HAE_Status := 0; -- o.k.
: VMS.Stams_Value := VMS.Success;
: VMS.Status_Value := VMS.Success;
: StadeLChanml_Type; -for Sending mailbox

begin -- procedure Start Mailboxes and Network

VMS.Create_Mailbox(For_BLOX,
S_Mailbox_Status,

S_Channel); -- for sending

VMS.Cmatc_Mailbox(From_BLOX,
R_Mailbox_Status,

R_Channel); - for receiving

end User_Mailbox_Manager,

Figure 7. Direct Call Which Works

K. Rogers
MITRE

12 of 29

APPENDIX A

STATISTICS ON MODULES AND ADA STATEMENTS

During the process of writing the code, information was not captured about versions or number of lines
written or tested. Instead, at_er-tbe-faet analysis has been done on the rather ad hoe library structure which

was in place upon the successful completion of the product. We attempted to garner some information
about reuse of code from external sources, the creation of code that was reusable within the context of the

product, and the amount of test code required to produce a working result.

The following assumptions were made in examining the libraries:

• It is not feasible to determine reuse below the module level.

• If a module has a unique name, it is counted as a unique piece of code, recognizing that

much code was duplicated.

• If two modules of the same name have different numbers of statements, they are
considered to be two different modules.

The modules were classified by purpose (product, discarded, or test) and by source (new, reused, or

new used multiple times). For each category, the number of modules and Ada statements was determined.

The following table contains the overall results:

Statements Modules Statements/Module

Total 11802 188 62

Product 2212 33 67

Test 6581 118 55
Discarded 3009 37 81

Reused 228 4 57
New 11419 179 63

New Multiple 155 5 31

K. Rogers
MITRE
13 of 29

To examine just the product code for reuse, the following table was developed:

Statements Modules Statements/Module

Product 2212 33 67

Reused 174 2 87
New 1929 27 71

New Multiple 109 4 27

Some ratios of possible interest follow:

Test / Product
Reused Product / Total Product

New Multiple / Total Product
New Multiple+Reused / Total Product

Statements Modules

2.9 3.5
0.08 0.06
0.05 O.12
0.13 0.18

These ratios reveal that the amount of test code is roughly three times the size of the product. _eused

code from external sources accounted for about 7% of the code, while code employed multiple times was
5% of product statements and 12% of modules. The combined multiple purpose code accounted for 13-
18% of total product code.

K. Rogers
MITRE

14 of 29

BIBLIOGRAPHY

Ambrose, L.A. and K. L. Rogers (September 1989), "Lessons Learned: Object Oriented Methodologies,
Ada, The Data Management System Testbed, and Prototyping," JSC-23903, Houston, TX: The MITRE

Corporation.

Boehm, B.W. (1981), Software Engineering Economics, Englewood Cliffs, NJ: Prentice-Hall.

Booch, G. (1987a), Software Components with Ada, Menlo Park, CA: Benjamin/Cummings Publishing

Company, Inc.

Booch, G. (1987b), Software Engineering with Ada, Second Edition, Menlo Park, CA:

Benjamin/Cummings Publishing Company, Inc.

Cohen, N. (1986), Ada as a Second Language, New York, N-Y: McGraw-Hill.

Digital Equipment Corporation (February 1985), VAX Ada Programmer's Run-Time Reference Manual,

Maynard, MA: Digital Equipment Corporation.

Loe_ Engineering and Sciences Company (August 1988), "The End-to-End Test Capability (ETC) Test
Bed Nodal Interface Control Document (IC'D) (Initial Phase of Demonstration No. 3)," LESC-25117,
Houston, TX, Job Order 33-102, Contract NAS9-17900.

NASA Goddard Space Flight Center (May 1987), Ada Style Guide, Version 1.1, Software Engineering

Laboratory Series, SEL-87-002, Greenbelt, MD: Goddard Space Hight Center.

Nissen, J. and P. WaUis (1984), Portability and Style in Ada, Cambridge, MA: Cambridge University
Press.

Robinson, T. (March 1988), "Requirements for Project Management in a High Productivity Software

Engineering Environment," unpublished, Houston, TX: The MITRE Corporation.

Swartout, W. and R. Balzer (July 1982), "On the Inevitable Intertwining of Specification and
Implementation," Communications of the ACM, XXV:7, pp. 438-440.

Ulmer, J. (June 1989), "OMS Integration Test Bed With OMGA Control," Test Report (Demonstration

3A), Job Order 052-32-369, Houston, TX: TRW.

K. Rogers
MITRE

15 of 29

ACS

ADS

ANSI

DADS

DEC

DMS

GN&C

HAE

HCIL

JSC

MML

MPAC

MSID

NASA

OMS

SSE

SSD

SSFP

UIMS

UMM

ACRONYM LIST

Aria Compilation System

Ancillary Data Service

American National Standards Institute

Data Acquisition and Distribution Service

Digital Equipment Corporation

Data Management System

Guidance, Navigation and Control

HCIL Aria Executive

Human Computer Interaction Laboratory

Johnson Space Center

Master Measta_ment List

Multi Purpose Application Console

Measurement/Stimulus Identifier

National Aeronautics and Space Administration

Operations Management System

Software Support Environment

Spacecraft Software Division

Space Station Freedom Program

User Interface Management System

User Mailbox Manager

K. Rogers
MITRE

16 of 29

O
lira lira

0

Z

K. Rogers
MITRE

17 of 29

o
U}

iBm

.,..,., =_

o ,,,

_0 I I I I I

0

cO

K. Rogers
MITRE
18 of 29

0

0

I

e_

o

oII

0 0

L.

I

>
0

t_
al--z

"0

0_ o
Z c

0 c"

_--o

0 0

0 0
0 0

0

I a I---

C "0
0 0

0

...A

00
c-
O

0 C---
°_

.o o
e_a

mX o

<
>enffl

K. Rogers

MITRE

19 of 29

&3

I---

03
_O
CO

,e-

mm

"1-

iim

O_

• • •

K. Rogers
MITRE
20 of 29

o -_

• • • • •

K. Rogers
MITRE

21 of 29

iim

m

o
|

..J

<

(D

GO _O_ 04

o. o. _.

• • • •

K. Rogers

MITRE

22 of 29

Q- I

• • •

W

K. Rogers
MITRE

23 oI 29

0

0
iim

0

iim

00

"0
0
0

O'J

,. 'E

0 =

-= ..9o"- 0 " _ :=
_ 0 o,'I::: 0

"0 "=' "- 0
I I O= _ I

• •

gO

K. Rogers
MITRE
24 of 29

0
/

>

r_

<
L_

0
c_

0

s_

(D

i

In

0

0

"0
<

ml

I

II

o
ii

Ol

o•

D 0

0
llml

"0
C

mllm

>
mn

mn

s_
0

"0

E
E
0
0

rr

0

"0

s_

c-

0 "0._

¢_ E ,- x

0 De"

!_.
_0 0

0 > _ r_

13.'0 _ _- I

(n
=_
ml

e"
nll

0
iI

(n

1.-

e-

(n

ii

0
0

K, Rogers
MITRE
25 of 29

03

I---

O_

K. Rogers

MITRE

26 of 29

=

:+

_. a_I

• _ _.

0 •

K. Rogers
MITRE

27 of 29

Cd

e_
o

e-

e-

• • • •

K. Rogers

MITRE

28 of 29

"SOFTWARE SUPPORT ENVIRONMENT: ARCHITECTURE AND

DESIGN OVERVIEW"

C. Carmody, PRC/GIS

5798

m

0 ¸

rr _

<

<C

,<
Z

;[

UJ U.!
m

rr
rr
UJ

'" 0
m

rr
<C U)

UJ
uJ _
U)
U)

0 0
;[

0

C. Carmody
PRC/GI$

1 of 18

Z

I

C_
1.1.1

Z
,<
I,U
r_

I--
C_
W
I-ra
9"

,<
I.U
C_
C_

c_

c-
CD

c-
O

0

CD

C_

.m

c-
C_
11,=.

0
c_

c_

c-
C_

.m

c_

a
LU

C. Carmody

PKC/GIS

3 of 18

Z

I

C_
W

Z

W

U.i
I-
I

..r
o

w
c_
c_

C
C_

°l

c_
(1)
r7
1

c_

0

0

<
W

CD
c-

c-

.1

c_LO

• 2
"c_--' -'-' _.-

o __ o o0,._,..
1

-,-' > CO

"-- a,1
> -_

< "T" _ <
0 W W ,_

W

C. Carmody

PRC/GIS

3 of 18

IEI

ILl

O
V-.
O
tlJ

O
re
la.

tiJ
Or)

(D
o9

LIJ
o_
o0

00

o
__o

•O,,,A m

O

<

C. Carmody
PRC/GIS
4 of 18

Z
0
i

(n
UJ

Z
<I:

,9,
' .=J

_<
_8

LL,I --
(/3 0
(/) Z

C. Carmody

PKC/GIS

5 of 18

Z

i

I_1

Z

I.IJ

I-

IJJ
I-t

i

"10

@
I

--I

lib

GI

I-

J

TTJ

-r-"

I
v

X

X

m
m

ir_ m

t.,-

Ii1

IX)

I

i,,i

L_

T

!

I

I

I

I

,..,J

i

|

[-

m

q

C. Carmody
PRC/GIS

6 of 18

Z

U)
uJ

Z
<1:
IJJ
rr

)-.
0
UJ
l--
HI

-r-
tO
n-
<
UJ
(/)
(/)

I--

drop
(.1

I,-

u}

u)
0
i

G)
>
(l)

._1

.C
O)

emmm

"I'-

I-.

LLI

(/)

--,_ --.._.__,1 _

__, ;_.!_ _,_
l

C. Carmody
PRC/GIS

7of 18

Z
O
I

¢,0

es

¢-s
Z
¢t

ut
ee

I--,
O
I&l
I--,

-I-
O

¢t

la,I
{D
¢D

c"

02
(D
a
m

t_

O

on

¢-
O

<

¢-

O

¢/}
(D

:D
.£2

k.

a=
<
>,
(D

c-

o2
¢D
a
LLJ
03
GO

(D
¢-

O

C0

¢-
O
t_
O

Q.

<
"O

g
"r'-
O

O
tO.....

O

¢D
¢O
e--

O
Ii
t,¢...

c-

G_

00

C. Carmody

PRC/GIS

8 of 18

-' _

me.._

"__

_3o

I--

_ o

E
,.- .,_

o_

< .__ _

C. Carmody
PRC/GIS

9 of 18

Z

-r.
O

ILl
¢D

O
in

O
.u
m

"._ c-

O ca
-o

a 8

__ P,_ 2

4--' 0

o
"0

0

0

0

0

t-
t-

W

C. Carmody
PRC/GIS

10 of 18

Z

cn
i.u

z

o

o

o
c_

c-

C_ c_

e

a
CD

C_ c-

c_
CD

a
w

c_
CD 0

a c._

C. Carmody
PKC/GIS

11 of 18

Z
O
m

(/)
UJ

Z
.<
Ill
rr

I--
0
111
F--
m

-r-
0
rr
<
I11
CO
U)

0
oO
0

o

C. Carmody
PRC/GIS
12 of 18

Z

I

00
Ill

Z

Ill

I

¢D
re

Ill

00

09

i

C)

C)
CD
c-
c-

t_
t.__

CD
¢--

t._

O
M,,-

"¢D
O
t__

ft.

t-
CD
o9

w _
a a

0

0

0

"7

m

0

0

o. o.

0

m

V

m

0

0
C_

c-

..C

0

0

au
m

!

C
0

om

O.

0')

m

0
W

C. Carmody

PRC/GIS

13 of 18

C. Carmody

PRC/GIS

14 of 18

0

C. Carmody

PRC/GIS
15 of 18

Z

m

(n
uJ

z

w
rr

0
uJ
m

2:
0
rr
<C
ILl
C_
C_

m

c_
t_

c_
Q.

m

0

0
C_
c-

.m

o_

cO

I--
0
c-

O

0
0

I--

m

cO
c-
O

0

L.L

0
C_

c_

.--"--4-' _ .,_. ,_, .,__,_, 1::: (/) (D ___ o_oo_ o_"0 13(I)

o___oo__ o__ o_____

(J

0 o

E
13

Z 0
0 _ (J
*-. _" 0 0
"I 0 0 _- _0

°_

0 0 0 _-
-J ,, ,, 0

_o
o_-

m

cO

0

00

o m

(/3 oo
=SO. '.-

-i- _=

0

C. Carmody

PK.C/GIS

16 of 18

,,o,

(/)

o o o
04 CO

C. Carmody
PRCIGIS

17 of 18

C. Carmody
PRC/GIS
18 of 18

0
em

0
8m

0
.0
0
L--

m

b-

D_
am
m

u_

o

.,, _,-

r-
o_

R. LaBaugh
Marlin Marie[ta

l of II

"FLIGHT TELEROBOTIC SERVICER"

R. LaBaugh, Martin Marietta

5798

=o
O0

O9

LU

O9

LU

q_

°_

0

E
°_

O9
r-

"13
o

0

r-

°_

U_

0

n-

>
°_

00

_J

x
LU

R. LaBaugh
Marlin Mariella
:tof II

e""

E

3

n_

I I

_,11 _ _ I
--II _ _1

R. LaBaugh
Martin Mariegla

3of 11

a. _Baugh
Marlin Mariella
4of 11

R.LaBaugh
MartinMarietta
Sof 11

0

2
12.

,,C
|l

L_

0
0"}

l

l

0

C
0

0

z
Z_-- wO

n-
w

0
rr
I--
Z
0

a
z

i

o n
o

N

-r
0
o

I"

!

0
LO

0

0
C

C)-

LL
O_
0
0

0

t-
0

0
r-

°_

(/)
q_

0
n
C3
CO

N

"1-

o
o
o,.I

!

o
LO

0

o
e-

l.l_

c)_
0
0

._.1

0

CO

0

e-
0

0

e--

0

R. LaBaugh
Martin Marietla

6of 11

o

,,=,

o

a

(.0
(I)

('tl
(0
(/)
(D

=E
O0
1.0
1.0

EL-
(I) 0

(_'E
_'0

m_
if) _..
(1) 0

F-

"orr"

m (1)

g. LaBaugh
Marlin Marietla
7of 11

R. LaBaugh
Martin Marietta
8 of II

o}
1...

0

ill

C
mm

e.l

o

o
l_

a.

S

e_c_

•_ _oo _
_--- r#J

r" i i i v# i i I i i i i
i'/"I

R. LaBaugh
Marlin Mariella

9ofll

R.LaBaush
Marlin Marielta

I0 of II

!_

(j (D ..-._
N

rn .E_ 212

f-
--O

0
(D
gO

E
O O LI') O OO
U') 0 04 "_I"I_ '_I"
¢0 liO ,- ¢0 CO ,---

J_. _.--,r-

r'- I_ r,- I',., .,- gO .,-
0'_ .,-. 0") ,,_ o (.o (..o
.,-- .,- ,,- 0 v- .,- o,I

0

E

0 I',- O_ CO (,D CO 0") 1,0 GO
O_ ','- '_" LO ',-- r.... (:_) .,_'. co
.,- ,,- .,- o .,- .,- (M oJ .,-

R. LaBaugh
Martin Mariella

11 of 11

"LESSONS LEARNED IN PROTOTYPING THE SPACE STATION

REMOTE MANIPULATOR SYSTEM CONTROL ALGORITHMS

IN ADA"

P. Gacuk, SPAR Aerospace

5798

cl_
o

i
03

tD

n-

P. Gacuk

SPAR Aerospace
1 of 62

II

m

m
am

I

li=.

0

E

l o _ _> _ -8

a a _m
_- • • • • •

P. Gacuk

SPAR Aerospace
2 of 63

m
m

)
(n

12.

A

¢,0

¢r

V

(n

k._

O

m

es_
iN

e_

=o .-
® 8
rr (D

O O
ou

c-"

8

- _ _ _
"_._ t3 _ >,

0.o • • • •

o

P. Gacuk

SPAR Aerospace
3 of 62

m

¢-

¢-
m

O'J
¢-

O

O

P. Gacuk

SPAR Aerospace
4 of 62

0

0

0

CD

22)

"_ U_

_- 0

(D c-
-J 0

_.1

•-_ a -'_ .,-

o_ ,-n E8

rr __ a
0 0 0

I-- I-" !-- I--"

P. Gacuk

SPAR Aerospace

5 of 62

i
a

I
>

P. Gacuk

SPAR Aerospace

6 of 62

O.

P. Gacuk

SPAR Aerospace
7 of 62

=o

O'J
e..

0
0

if.

¢1
0

0
_I

z
o
I--
<
¢r"
<
_.1
o
ILl

LL
0
ILl
ILl
rr

II iii

"r

"I-

P. Gacuk

SPAR Aerospace
8 of 62

2

III

I1)
0
III
I:1.

<

Z

@

0

II

E _.
@ Q.

OoE _
O0L.,,.-A"
LIL.,,_ I

®

ORIGINAL PAGE IS

OF POOR QUALITY

P. Gacuk
SPAR Aerospace
9 of 62

P. Gacuk

SPAR Aerospace
I0 of 62

_¢
.g
o,

>,

0

0
L_

0,.

.e

q.-
0

P. Gacuk

SPAR Aerospace
11 of 62

c

?

i
0
L.
13.

L.

_o
O'J

i
13.

cO
O_

8

8

i

(/)

P. Gacuk

SPAR Aerospace
12 of 62

I
I

_3
v

E

o<

i I

.__.-E E

L__

Q.. o ._

rr _
c- 0
oO

o

I

>

P. Gacuk

SPAR Aerospace
13 of 62

I,..

r-

mm

m

Bm

O

P. Gacuk
SPAR Aerospace
14 of 62

Q.
>,,

O
O
t...

a.

e-
l-

tn
"O

(o9
¢B

t_..

"O
"O

¢,O
¢D

u

c"

E
E
8

-_ _ _=

0 "0 _ c- "0

• • • • • m

a.

(D

mm

0
Ik....

X
U.l

c--urn

o
.¢...m

0

c-
O)

E

cm-

(.--
0

Ik...

c-
O
0

Ik...

0
It.

.._
0
0

"0

0

13_

P. Gacuk

SPAR Aerospace

15 of 62

m
ll

0
0

I1.

v

ooO"

"_ _o o-__= i=_ =_-

_ SE o__o_r 000J

°.

,- E

c ,,-

LU

_ c

1 _-

I

I

Ol
Ol

>,

o 0
m

0
F-

0
CO

co
(I)

0
(,3
(I)
QZ

P. Gacuk

SPAR Aerospace
16 of 62

13.

i5

0

ii
L_

.Q

"I-

o

o _ 5 _ _
.-_ _ g_

P. Gacuk

SPAR Aerospace
17 of 62

o

03

Q
I

,,rY)

P. Gacuk

SPAR Aerospace
18 of 62

a)
0

P. Gacuk

SPAR Aerospace
19 of 62

C
0

<
rag

e.- d
,o/Vl

<
(¢)

8 _ _ _

e8 5o

•_ ,w O0

- r.

. ., -_ _'_
-_ _o o_ _, o
_ m,m.m• o

_o
o

I
(,0

I

>

P. Gacuk

SPAR Aerospace

20 of 62

O3

12.

C

O'J

C

m

,Jl,._

12.

s._

t'-

O
O

I--

E E

m

imp, ii

E =

_- ..+...,
O _

©O
II II

©
©

P. Gacuk

SPAR Aerospace
21 o1" 62

o
I

¢O
I

>

¢0

1-
O.

C

¢0

"O

m
im

!...

C

E
m

!__

a.

"O

C

wwm

L_

c-
O

im

C

E
n

E
"O

cO

-
X
iii
(I)
c-

(-
(I)

0 .c:

0 .E-;
el (1)

c-
O o
n _ .j

P. Gacuk
SPAR Aerospace
22 of 62

Q

CO
O3

I

>

)

-8

-_- .-8 a
8 _8 5

i o -_

_8 _ _ -_

_ t--
_-- -e-

• • • • •

o
I

p. Gacuk

SPAR Aerospace

23 of 62

m

.m

8

)

k" m

Q

(Y)

P. Gacuk

SPAR Aerospace
24 of 62

O

:3

,,>,

a
o
0

l

ID

"13

°+

13.
m

(D
-1-

z 8

.<

0 m
0 _-

cO

P. Gacuk

SPAR Aerospace

25 of 62

ao

to
to
I

>

em

e=
0

wm

:3
m

m
>

ILl

I
A

a
O
O

"0
m

m

q3
r_"

I--

m

rr"

P. Gacuk

SPAR Aerospace
26 of 62

a=
o

.o

t_

A

0
0 "0

(D
_5

N

• • •

o
i

P. Gacuk

SPAR Aerospace
27 of 62

-_ I

JC

_0
_rn

0
e-

._ w

n_ "_

•_'-" 0

o

c- w _ r_
I- 0 o_

.o

0 _
n m

-_ ._ c_ .0
(- t-- ¢I

(I)

"_ "_ w w
• • • •

P. Gacuk

SPAR Aerospace

28 of 62

T

(/)

l= "_-"
_0

.
(D

_.!

_'o
I,- O_

0") _ 0

_ aE°

0

. _
s oa

.-1

.=g

-g_ ._ _-_

P. Gacuk

SPAR Aerospace

29 of 62

c

>

V-SS-081

Object Diagram SPAR

SPCS

COMMANDS ARM *

ARM
DEFINITION

¥

POINT OF
RESOLUTION *

'{

OUTPUT
LOGGER

{

JOINTS *

* Composite Objects

(Note: The arrows indicate direction of control.)

P. Gacuk

SPAR Aerospace
30 of 62

t--
.m

L_

O9 t--

O "_

O =
t_

(D "O
t---

oI-.

o

8

I---

P. Gacuk

SPAR Aerospace
31 of 62

eel
C)

d,
CO

I

>

8

-g
_ _) o

_ 8 _ S
_ " _ o_
• • • •

P. Gacuk

SPAR Aerospace

32 of 62

c

q3

_,,>,
-- I

_O

2

o

8 °

_o

P. Gacuk

SPAR Aerospace

33 of 62

c
i

t,q

(/)

>, c-

,7- -_

'a 0
a _ E
E _- m
2 _- "5
u.. "_

• _- _ _ ft.

P. Gacuk

SPAR Aerospace
34 of 62

V-SS-081

Old Approach of Mapping Ada Units to CSCs & CSUs SPAR

Ada Implementation
Object Oriented World

Design World
r 1

"----'_iiiiiiiiiiiiiii!!iiiii!iiiili!ii_:i:__!mi_!_!_!__i_ _!m!m_:::::::i::iiiii:::::i::i::iiiii::i::::::ill:.:#m___:_ TiFi II

Composite I \ I_iiiiiiiiiii!iii:.iii!i!iiiil' i -- -- Ii
Object I \ I!i::i_i::i:.i::i_i::i_i_i_i::!_I ;

; XContro' T-
I \ Pii ,,

Xi_ Tii Ii Withing

...... J

I P -- _ \

,,, (o I
' _k --b J single package _i_ I Piii /_

,,..," _ _" i_ii_:::iiiii:: !:.:-i:!ii_: _!!::i_/ I I Fiii /I

("_ "_ Simple II Vii Tii' II r

"Jn I Object i '" ----JJ I
r" J _ I

Other Object Maps to
on Waiver List

r

(generally I
simple object) I

I

System - CSCI

,,J

JSC 30244

(similar to 2167A)
Documentation

Object A - CSC

Pkg 1 - Super CSU

Proc i - CSU
Func i - CSU
Task i - CSU

Pkg 2 - Super CSU

Proc ii - CSU
Func ii - CSU
Task ii - CSU

World
w

_vs s

Object B - CSC

Pkg 3 - Super CSU

Proc iii - CSU
Func iii- CSU
Task iii - CSU

I

¥ ¥ V

Other

Package on
Waiver

List

'I
I
I
I
I
I
I

_J

P. Gacuk

SPAR Aerospace
35 oi" 62

c
i

P. Gacuk

SPAR Aerospace
36 of 62

w

<

p. Gac_k

SPAR Aerospace
37 of 62

wwm

mN

e

<

e"
ml

._0

03

Z
03
03

C_

a.

O

_6
m

O

<
03

o9

oo
E

Z
03
c-

03

03
O

03
E
a)
(1)
03

E
0)

03

03

03
<

O

O
¢--- .,_,

°c-
O

03

< ._o

rr"

03

=m

c"

¢--

{32.

CI

co
2
c-
O

E

03

o9

03
<

O
(3

O.
o9
<

O

X
W

0)
¢-

P. Gacuk

SPAR Aerospace

38 of 62

o
i

03
C0

i

>

V-SS-081

Proposed Approach of Mapping Ada Units
to CSCs & CSUs

SPAR

CSC
CSU

ACU-_- Library Unit -_-Ada Spec

ACU _ Secondary Unit _ Ada Body

CSCI CSC CSU
ACU-_- Secondary Unit-_-Ada Subunit

ACU _ Secondary Unit-_-Ada Subunit

CSU
CSC

ACU = Ada Compilation Unit

" Subsystem_A

i |
k. 'toO°""J

Subsystem_B

CSCI "_ _[___

bsystem_C

Speclflcatlon--Export_

Implements /

_,, Imports J

4

ORIGINAL PAGE 13

OF POOR QUALITY

SPEC Y '_

BODY Y

SUBUNIT_Y2

P. Gacuk

SPAR Aerospace
39 of 62

n,,_.

e_

a

!,,,,,

• • • • • • o o o

P. Gacuk

SPAR Aerospace

40 of 62

*

E
L_

i5

C
lid

t,-
IlK

I-

,rE
\
\

oriel

V-SS-081

Exception Diagram

=k

SPAR

SPCS

Singularity_
Detected

During_
Augmented_
Position
Hold

4 _ Singularity_
Detected

Singularity_
Detected

SIMULATED
ARM PKG -

Singularity_Detected

I POR_PKG

Package A
generates
exception X

Package B Package C
handles handles and

exception Y re-raises
exception Z

Package D does
not handle and
therefore
propogates
exception W

p. Gacuk

SPAR Aerospace

42 of 62

_8

A

0 "0
I_. g_. ,_

O4 O3 c-

_ _o

ft. o ._
.__ _ _:

°_ (_

0
i

(y)
(/)
I

>

p. Gacuk

SPAR Aerospace

43 of 62

t_
"(3
<

r_
0
0
L-

0
ti.

c-
O

mm

t_
0

|m

e"

em

ffJ

r_
"0

0

_8 __5 =__

u) • • • •

P. Gacuk

SPAR Aerospace
44 of 62

t_

<

IZI
O
O
L.
O

1.1=

e=
O

mm

t_
O

q..=
ON

"O
O

tD
E

O
e0
O

el.=#

mm

.=.1

.m

c-

¢,9
C--

m

O

tl)
c-
tl)
(9

<_
¢/)
E
(D

c'-
._o

tl)

c'_
.m

...J

t/)

rr"

E
O

Ii

2Z_
(D

O
tl)
Cl2

c_
E

t-
.o_

Z3
O

... c- c-

• C 0 0
"_ -" e- e-.,_ol • oo,,C
_I m- • •

p. Gacuk

SPAR Aerospace

45 of 62

e_
c

i
>

"0

r_
0
0
L.

_8

CD

>

P. Gacuk

SPAR Aerospace
48 of 62

II

C_
0..

aP

m
::3

C:

,..J

r'-

U}

°oI

0

"1::

C::
d --

I,.U "_{,.-
<_

C: 0
0 --- 0
0 ._

a

(,,.)

0
_ _ rn

r-- -o _

c- _

o _ __

x:: _ 123
°.--,
_ _ c'-
- - .__
U.I _ "r"

P. Gacuk

SPAR Aerospace
47 of 62

i
tO
tO

I

>

c_
"O
,,:C

°_

F.-.
(" O')
(1) C

.._!

a_ ,,:(

or)

ml
m

Q.
Q.
((
om

(1)
(-.

I--

"C3
(-

Og

O"
lu

(-
t'-

(1)
I'--

E
.m

O.)
E

c-
U.J

(].)
c_

z

E (1)

_ _ >

*-°_) 13..I-
• To I

°_ ,_d_-_

"_ SP_6111Aemel_:e
48"o/_2

¢30

>

0_

8

>
¢o
(D

>
2

n

O3

<
Z

c-

P. Gacuk

SPAR Aerospace
49 of 62

Q_
Q

I
>

m

• O_ CJ

I--Q.
4"- ,... 0

- 0 m

° __ 6
¢-n0

_- _ o

._ z_

_ <
0 z U.l

- a._-

P. Gacuk

SPAR Aerospace
50 of 62

m

.c: I

cucO

z_

g 2 - >
Z 09 _D Cr_

.c "_
o

.£ _ u_ = -o

_ _ _=_ z

co _

c_ • • •

oo
o
i

(Y)

i

>

P. Gacuk

SPAR Aerospace
51 of 62

g

o

_3
U=

>.,

g

-1- _(-
i ,,,o _B

o

Eo_-_

if)

° _
o_ _z

e _e._ _-

P. (]acuk

SPAR A©rospac¢
52 ol 62

_D
O
e-
¢¢
"O

g

_D

_2

_ tt.

¢D

t-- >,_

"O -._

8a -_

•_ < .o

E <

_ .-_" o
> _-.

__. _o ._

_ _ __o
._ _ _" _

E o E

o_. _

(1) m

c

(£

P. Gacuk

SPAR Aerospace
53 of 62

O
e-

CD
c-

o3

o2
O
O

<(
o2

K2. C

._d 8

a

O

D
(D

gD_
e-ll
o2
CD

.>_
02

c-
Im

I
c-
O
Z
o_

c-

c-
(D

(D

c-
m

_D

C_

o2
oB

c-

(D

o2
(D
Z

_D
o2

(D

o2
c_

W

(D
f12

0
c-
c-

O

o2
6_

c-

o2

Z

I

P. Gacuk

SPAR Aerospace
54 of 62

¢.O

8
.m

O..

oE

Eo
O

8

t_

O

_.o6 _ _-
.._, Z 0

._ <_ .__ 8-
< N

$ • •

P. Gacuk

SPAR Aerospace
55 of 62

_9
0")

.5

o <_
0 ---_

I-" _..

g' _._

1= "2

-- c

C _ "--

,_._ o

•_ _, ® _,
F-r_ _0 CO_

) • -,- •

P. Gacuk

SPAR Aeros_,
56 of 62

o

g

n_

P. Gacuk

SPAR Aerospace
57 of 62

bi

O
x_.

rt

.=

cO "_

CU ---

UD
CU 4.., _.

P. Gacuk

SPAR Aerospace

58 of 62

C3

6"3

=>

ec:
c

i

i

P. Gacuk

SPAR Aerospace
59 of 62

¢J
C

a=

CD

O')
c'-

c
u) .O

N

c c_o
rr"

cD
m _ f="

am

¢=" Q= _.m

P. Gacuk

SPAR Aerospace
60 of 62

OD
Q
I

¢/)

8

a

ee

p. Gacuk

SPAR Aerospace

61 of 62

W

mE

m

a..

= _ _ _ _

.8__,_ _ ._

• • • • • • •

P. Gacuk
SPAR Aerospace
62 of 62

APPENDIX A -- LIST OF ATTENDEES

5798

SECOND NASA Ada USERS SYMPOSIUM ATTENDEES

ADAMS, NEIL BENDIX FIELD ENGINEERING CORP.

AIKENS, STEPHEN D DEPT. OF DEFENSE

ALANEN, JACK SOHAR, INC.

AMBROSE, LESLIE THE MITRE CORP.

ANDERSEN, BILL DEPT. OF DEFENSE

ANDERSON, FRANCES STANFORD TELECOMMUNICATIONS, INC.

ANDERSON, MARSHALL DEPT. OF DEFENSE

ANDREOTTA, DONALD J NASA/HEADQUARTERS

ANGIER, BRUCE INSTITUTE FOR DEFENSE ANALYSIS

APPLEGET, PATRICIA WESTINGHOUSE ELECTRIC CORP.

ARBOGAST, GORDON W.. DEFENSE COMMUNICATIONS AGENCY

ARMSTRONG, MARY IIT RESEARCH INSTITUTE

ARMSTRONG, ROSE MOUNTAINET, INC.

ASHTON, ANNETTE NAVAL SURFACE WEAPONS CENTER

ATKINS, EARL ELECTRONIC WARFARE ASSOCIATION

AZUMA, KENNETH I FORD AEROSPACE CO.

BACHMAN, SCOTT DEPT. OF DEFENSE

BAILEY, KIRK COMPUTER SCIENCES CORP.

BARBER, TOM COMPUTER SCIENCES CORP.

BARDIN, BRYCE M HUGHES AIRCRAFT CO.

BARKSDALE, JOE NASA/GSFC

BARNES, DAVID UNISYS CORP.

BARNES, FRANK LOCKHEED MISSILE & SPACE CO.

BARRY, GLEN EBA, INC.

BASSMAN, MITCHELL J COMPUTER SCIENCES CORP.

BEARD, ROBERT M COMPUTER SCIENCES CORP.

BECK, HANK JET PROPULSION LAB

BENEDICT, ROBERT J BOOZ, ALLEN & HAMILTON, INC.

BENITEZ, MEG DEPT. OF DEFENSE

BERRENS, MIKE TELEDYNE BROWN ENGINEERING

BEWTRA, MANJU CTA, INC.

BLAND, SKIP A UNISYS CORP.

BOND, PAUL SAIC

BOOTH, ERIC COMPUTER SCIENCES CORP.

BREDESON, MIMI SPACE TELESCOPE SCIENCE INSTITUTE

BREDESON, RICHARD W OMITRON, INC.

BRENNEMAN, DALE COMPUTER SCIENCES CORP.

BRESLIN, MARK GENERAL ELECTRIC CORP.

BRINKER, ELISABETH NASA/GSFC

BROWN, HARROLD E NASA/MSFC

BROWN, MARTY COMPUTER SCIENCES CORP.

BROWN, NEIL F DEPT. OF DEFENSE

BROWN, OTIS GRUMMAN

BUCKLEY, JOE COMPUTER SCIENCES CORP.

BUELL, JOHN COMPUTER SCIENCES CORP.

BUNCH, ALEDA SOCIAL SECURITY ADMINISTRATION

BURLEY, RICK NASA/GSFC

BUSBY, MARY B IBM

BUTLER, MADELINE J NASA/GSFC

CAKE, SPENCER C HQ USAF/SCTT

CARLISLE, CANDACE NASA/GSFC

A-I •

SECOND NASA Ada USERS SYMPOSIUM ATTENDEES

CARMODY, CORA PLANNING RESEARCH CORP.

CARPENTER, MARIBETH B CARNEGIE MELLON UNIVERSITY

CARRIO, MIGUEL TELEDYNE BROWN ENGINEERING

CASASANTA, RALPH COMPUTER SCIENCES CORP.

CASE, ROBERT DEPT. OF DEFENSE

CATO, WILLIAM HQ USAF/SCTT

CERNOSEK, GARY J MCDONNELL DOUGLAS SPACE SYSTEMS CO.

CHANG, JOAN COMPUTER SCIENCES CORP.

CHEDGEY, CHRIS SPAR AEROSPACE CO.

CHU, MARTHA COMPUTER SCIENCES CORP.

CHU, RICHARD FORD AEROSPACE CO.

CHUNG, ANDREW FAA TECHNICAL CENTER

CHURCH, VIC COMPUTER SCIENCES CORP.

CISNEY, LEE NASA/GSFC

COHEN, HERBERT E AMSAA

COHEN, SARA GENERAL ELECTRIC CORP.

COLEMAN, MONTE DEPT. OF THE ARMY

COLSTON, RAYNETT COMPUTER SCIENCES CORP.

COOLEY, JAMES NASA/GSFC

COUCHOUD, CARL B SOCIAL SECURITY ADMINISTRATION

COVER, DONNA COMPUTER SCIENCES CORP.

CRAFTS, RALPH SS&T, INC.

CRAINE, BOB LOGICON, INC.

CRAMBLITT, FRANK IIT RESEARCH INSTITUTE

CRAWFORD, STEW

CREASY, PHIL MCDONNELL DOUGLAS ASTRONAUTICS CO.

CREEGAN, JIM FORD AEROSPACE CO.

CREPS, DICK UNISYS CORP.

CROKER, JOHN LISAN CORP.

CUCE, ROBERT J DEFENSE COMMUNICATIONS AGENCY

CUESTA, ERNESTO COMPUTER SCIENCES CORP.

CUTTS, ROY D DEPT. OF DEFENSE

D'AGOSTINO, JEFF OAO CORP.

DAKU, WALTER VITRO CORP.

DANGERFIELD, JOSEPH W TELESOFT

DANIELL, WALTER E IBM

DAVIS, TIM NASA/GSFC

DECKER, WILLIAM COMPUTER SCIENCES CORP.

DEGRAFF, GEORGE GRUMMAN

DEMAIO, LOUIS , NASA/GSFC

DEMEO, JOSEPH R FEDERAL AVIATION AGENCY

DEMILLO, RICH NATIONAL SCIENCE FOUNDATION

DERENZO, BILL TARTAN LABS

DEVARAJ, SAVITHRI COMPUTER SCIENCES CORP.

DEVLIN, MIKE CONCURRENT COMPUTER CO.

DEWBRE, DOYLE DEPT. OF DEFENSE

DIGNAN, DAVID M DEPT. OF DEFENSE

DIKEL, DAVID FOCUSED ADA RESEARCH

DOUGLAS, FRANK J SOFTRAN,INC.

DUBIN, HENRY C U.S. ARMY OFFICE OF TEST & EVAL.

DUNIHO, MICKEY DEPT. OF DEFENSE

DUREK, TOM TRW

AGEN

A-2

SECOND NASA Ada USERS SYMPOSIUM ATTENDEES

DUTTINE, VALERIE NASA/GSFC

EGLITIS, JOHN LOGICON, INC.

ELLIOTT, DEAN F SWALES & ASSOCIATES INC.

ELLIS, WALTER IBM

EMEIGH, MICHAEL LOGICON, INC.

EMERSON, CURTIS NASA/GSFC

EMERY, RICHARD VITRO CORP.

ERB, DONA M THE MITRE CORP.

ESHLEMAN, LAURA DEPT. OF DEFENSE

ESKER, LINDA COMPUTER SCIENCES CORP.

EUSTICE, ANN IIT RESEARCH INSTITUTE

FAFF, TIM IIT RESEARCH INSTITUTE

FEERRAR, WALLACE THE MITRE CORP.

FERNANDEZ, AL COMPUTER SCIENCES CORP.

FINK, MARY LOUISE A EPA

FISHER, TOM BOOZ, ALLEN & HAMILTON, INC.

FISHKIND, STAN NASA/HEADQUARTERS

FORSYTHE, RON NASA/WALLOPS FLIGHT FACILITY
FOURROUX, KATHY TELEDYNE BROWN ENGINEERING

FOUSER, THOMAS J JET PROPULSION LAB

FOX, EILEEN M IDE

FRIEND, GREGG COMPUTER SCIENCES CORP.

GACUK, PETER SPAR AEROSPACE CO.

GAFFKE, WILLIAM E PROJECT ENGINEERING, INC.
GALLAGHER, BARBARA DEPT. OF DEFENSE

GARCIA, ENRIQUE A JET PROPULSION LAB

GARY, ALAN V TELEDYNE BROWN ENGINEERING

GIESER, JIM VITRO CORP.

GILL, CHARLES W COMPUTER SCIENCES CORP.

GILLILAND, DENISE STANFORD TELECOMMUNICATIONS, INC.

GILYEAT, COLIN ADVANCED TECHNOLOGY, INC.
GIRAGOSIAN, PAULTHE MITRE CORP.

GLASS, JEFF PROJECT ENGINEERING, INC.
GLIES, MARK TELESOFT

GODFREY, SALLY NASA/GSFC

GOUW, ROBERT TRW

GRAHAM, MARCELLUS NASA/MSFC
GRAYBEAL, KYLE FEDERAL AVIATION AGENCY

GREEN, DAVID COMPUTER SCIENCES CORP.

GRIMALDI, STEVE BOOZ, ALLEN & HAMILTON, INC.
GRONDALSKI, JEAN COMPUTER SCIENCES CORP.

GRONECK, MIKE IBM

GUENTERBERG, SHARON PLANNING RESEARCH CORP.

HAIN, GERTRUD SABAS

HAIN, KLAUS SABAS

HALL, DANA SYSTEMS ENGINEERING AND SECURITY, INC

HALTERMAN, KAREN NASA/GSFC
HAMILTON, JOHN R FEDERAL AVIATION AGENCY

HAND, ROBERT GRUMMAN

A-3

SECOND NASA Ada USERS SYMPOSIUM ATTENDEES

HANG, BAILEY T BALLISTIC RESEARCH LAB

HARLESS, WALTON N TRW

HARRIS, BERNARD NASA/GSFC

HAYES, CAROL UNISYS CORP.

HEASTY, RICHARD COMPUTER SCIENCES CORP.

HEFFERNAN, HENRY G EDP NEWS SERVICES

HELLER, GERRY COMPUTER SCIENCES CORP.

HENDRICK, ROBERT B COMPUTER SCIENCES CORP.

HENRY-NICKENS, STEPHANIE NASA/GSFC

HERBOLSHEIMER, CHARLES FEDERAL AVIATION AGENCY

HEYL, NORMAN F U.S. GENERAL ACCOUNTING OFFICE

HIGGINS, HERMAN DEPT. OF DEFENSE

HILL, MIKE MARTIN MARIETTA

HILL, VICKI THE MITRE CORP.

HIOTT, JIM UNISYS CORP.

HOLLADAY, WENDY T NASA

HOLLOWAY, MICHAEL NASA/LARC

HOOTEN, MONICA FORD AEROSPACE CO.

HOUSTON, SUSAN LISAN CORP.

HSU, JAMES INFORMATION DYNAMICS, INC.

HUDSON, WENDY CONCURRENT COMPUTER CO.

HUTCHISON, GREG IBM

IRELAND, THOMAS TEKTRONIX DEFENSE SYSTEMS

JAHANGIRI, MAJID COMPUTER SCIENCES CORP.

JENKINS-BNAFA, JOVITA TRW

JENKINS-HUNTER, CARA R FEDERAL AVATION AGENCY

JESSEN, WILLIAM GENERAL ELECTRIC CORP.

JOHANNSON, HANK FORD AEROSPACE CO.

JONES, CARL SCIENCE APPLICATIONS, INC.

JONES, DAVID UNISYS CORP.

KARLIN, JAY PROJECT ENGINEERING, INC.

KASPUTYS, JACKIE NATIONAL SCIENCE FOUNDATION

KELLY, JOHN C JET PROPULSION LAB

KENNEDY, ELIZABETH A ROCKWELL INTERNATIONAL

KESTER, RUSH COMPUTER SCIENCES CORP.

KETCHUM, HARRY STATISTICA, INC.

KILE, THOMAS DEPT. OF THE ARMY

KIM, ROBERT D COMPUTER SCIENCES CORP.

KIMMINAU, PAMELA S DEPT. OF DEFENSE

KIRKPATRICK, MARK CARLOW ASSOC.

KOPP, ALLAN TELESOFT

KRAHN, MARGIE DEPT. OF DEFENSE

KREIDER, ROBERT NASA/HEADQUARTERS

KREMER, AUDREY IBM

KRIEGMAN, DAVID SRA CORP.

KUDLINSKI, ROBERT A NASA/LARC

KUNKEL, HENRY BOEING AEROSPACE CO.

LABAUGH, MODENNA MARTIN MARIETTA

LABAUGH, ROBERT MARTIN MARIETTA

A4

SECONDNASAAda USERSSYMPOSIUMATTENDEES

LANDIS, LINDA COMPUTERSCIENCESCORP.
LAVALLEE, DAVID FORDAEROSPACECO.
LEE, JOHN A........................ GENERALDYNAMICS
LEFEVRE, JEANNE UNISYS CORP.
LEVITT, DAVID S.................... COMPUTERSCIENCESCORP.
LIGHT, WARREN CTA, INC.
LIN, CHI Y......................... JET PROPULSIONLAB
LITTLEWOOD,CHRISTOPHER MARTIN MARIETTA
LIU, JEAN C........................ COMPUTERSCIENCESCORP.
LIU, KUEN-SAN COMPUTERSCIENCESCORP.
LOCKMAN,ABE GTE
LOESH, BOBE....................... JET PROPULSIONLAB
LONGENECKER,SALLY COMPUTERSCIENCESCORP.
LUCZAK, RAY COMPUTERSCIENCESCORP.
LaMARSH,MARGO NASA/LARC

MADDOCK,KARENR................... TECHNOLOGYPLANNING, INC.
MADISON, DAVE IIT RESEARCHINSTITUTE
MADSEN,KENT UNIVERSITY OF CALIFORNIA
MALAY, SUSAN PLANNINGANALYSIS CORP.
MALTHOUSE,NANCY LOGICON, INC.
MARCINIAK, JOHN CTA, INC.
MARGONO,JOHAN COMPUTERSCIENCESCORP.

MARKS, TOM DEPT. OF DEFENSE

MARSHLICK, MICHAEL COMPUTER SCIENCES CORP.

MARTIN, GEORGE W PROJECT ENGINEERING, INC.
MARTINEZ, BILL FORD AEROSPACE CO.

MARVRAY, ESMOND NASA/GSFC

MATHIASEN, CANDY UNISYS CORP.

MAURY, JESSE NASA/GSFC

MCCLURE, MARTY BENDIX FIELD ENGINEERING CORP.

MCDERMOTT, TIM COMPUTER SCIENCES CORP.

MCDONALD, BETH DEPT. OF DEFENSE

MCGARRY, FRANK NASA/GSFC

MCKENNA, JOHN J DEPT. OF DEFENSE

MCWEE, HARRY DEPT. OF DEFENSE

MEDEIROS, EDWARD COMPUTER SCIENCES CORP.

MERIFIELD, JAMES ADVANCED TECHNOLOGY, INC.

MICKEL, SUSAN GENERAL ELECTRIC CORP.

MILLER, JOHN COMPUTER SCIENCES CORP.

MILLER, KENNETH THE MITRE CORP.

MOONEY, PAT IBM

MOYLEN, ALDEN COMPUTER SCIENCES CORP.

MULLER, ERICH SPARTA, INC.

MYERS, MONTGOMERY UNISYS CORP.

MYERS, PHILIP I COMPUTER SCIENCES CORP.

NARROWS, BERNIE BENDIX FIELD ENGINEERING CORP.

NELSON, ROBERT W NASA/HEADQUARTERS

NICKENS, DON O HARRIS SPACE SYSTEMS CORP.

O'BRIEN, DAVID CONCURRENT COMPUTER CO.

O'MALLEY, JAMES HGO TECHNOLOGY

A-5

SECOND NASA Ada USERS SYMPOSIUM ATTENDEES

O'MALLEY, RUTH E HGO TECHNOLOGY

O'NEIL, BOB T NASA/HEADQUARTERS

PAGE, GERALD COMPUTER SCIENCES CORP.

PAJERSKI, ROSE NASA/GSFC

PALMER, JAMES G APPLIED PHYSICS LAB

PARESO, SAM HGO TECHNOLOGY

PASCIUTO, MIKE NASA/HEADQUARTERS

PELNIK, TAMMY M THE MITRE CORP.

PEREZ, FRANK UNISYS CORP.

PFLARTER, DAVE MCDONNELL DOUGLAS CORP.

PLETT, MICHAEL E COMPUTER SCIENCES CORP.

PLUNKETT, THERESA DEPT. OF DEFENSE

POLE, THOMAS SOFTWARE PRODUCTIVITY CONSORTIUM

PORTER, ADAM A UNIVERSITY OF CALIFORNIA

POTTER, WILLIAM NASA/GSFC

PRESSMAN, TOM STRICTLY BUSINESS COMPUTER SYSTEMS

PRESTON, DAVID IIT RESEARCH INSTITUTE

PRISEKIN, JULIA IIT RESEARCH INSTITUTE

PURCELL, ELIZABETH THE MITRE CORP.

QUANN, EILEEN S FASTRAK TRAINING, INC.

RADOSEVICH, JIM NASA/HEADQUARTERS

RANADE, PRAKASH V COMPUTER SCIENCES CORP.

RANEY, DALE L UNISYS CORP.

RAPP, DAVE DEPT. OF DEFENSE

REDDY, JAY STRICTLY BUSINESS COMPUTER SYSTEMS

RIGTERINK, PAUL COMPUTER SCIENCES CORP.

RITTER, SHEILA J NASA/GSFC

ROBESON, THERESA IIT RESEARCH INSTITUTE

ROGERS, KATHY THE MITRE CORP.

ROSENZWEIG, DAVE HARRIS SPACE SYSTEMS CORP.

ROTTERMAN, GENE GENERAL DYNAMICS

ROY, DAN FORD AEROSPACE CO.

RUDOLPH, RUTH COMPUTER SCIENCES CORP.

RUMPL_ WILLIAM M COMPUTER SCIENCES CORP.
RUSKIN, LESLIE COMPUTER SCIENCES CORP.

RUTEMILLER, OREN G STANFORD TELECOMMUNICATIONS, INC.

SABATINO, RICK OMITRON, INC.

SAUBLE, GEORGE OMITRON, INC.

SCHELLHASE, RONALD J COMPUTER SCIENCES CORP.

SCHOENBORN, BOB STATISTICA, INC.

SCHUETZLE, JIM FORD AEROSPACE CO.

SCHULER, MARY P NASA/LARC

SCHWARTZ, KAREN D GOVERNMENT COMPUTER NEWS

SCOTT, STEVE UNISYS CORP.

SEAVER, DAVID P PROJECT ENGINEERING, INC.

SEIDEWITZ, ED NASA/GSFC

SEVERINO, TONY GENERAL ELECTRIC/RCA

SHAW, CHARLES E CENTURY COMPUTING, INC.

SHAWE, M BENDIX FIELD ENGINEERING CORP.

A-6

SECOND NASA Ada USERS SYMPOSIUM ATTENDEES

SHEKARCHI, JOHN COMPUTER SCIENCES CORP.

SHEPPARD, SYLVIA B NASA/GSFC

SHI, JEFF RMS TECHNOLOGIES, INC.

SHOAN, WENDY NASA/GSFC

SHYMAN, STEVEN INSTITUTE FOR DEFENSE ANALYSIS

SIEGERT, GREG IIT RESEARCH INSTITUTE

SILBERBERG, DAVID NATIONAL COMPUTER SECURITY CENTER

SIMMONS, BARBARA DEPT. OF DEFENSE

SIMONS, MARK NASA/GSFC

SLACK, IKE MCDONNELL DOUGLAS ASTRONAUTICS CO.

SLEDGE, FRANK GTE

SMITH, GENE NASA/GSFC

SMITH, OLIVER EG&G WASC, INC.

SMITH, PAUL H NASA/HEADQUARTERS

SOLOMON, CARL ST SYSTEMS CORP.

SPENCE, BAILEY COMPUTER SCIENCES CORP.

SQUIRE, JON WESTINGHOUSE ELECTRIC CORP.

SQUIRES, BURTON E CONSULTANT

STARK, MICHAEL NASA/GSFC
STEGER, WARREN COMPUTER SCIENCES CORP.

STEINBACHER, JODY NASA/JPL

STOKES, ED COMPUTER SCIENCES CORP.

STUART, ANTOINETTE D DEPT. OF THE NAVY

SUBOTIN, ROSA COMPUTER SCIENCES CORP.

SULLIVAN, JOHN D FEDERAL AVIATION AGENCY

SUN, ALICE THE MITRE CORP.

SWALTZ, LEON IBM

SWEIGERT, DAVID DAEDALEAN

SZULEWSKI, PAUL C. S. DRAPER LAB, INC.

TASAKI, KEIJI NASA/GSFC

TAUSWORTHE, BOB NASA/JPL

TAVASSOLI, NAZ COMPUTER SCIENCES CORP.

TAYLOR, GUY FLEET COMBAT DIRECTION SYSTEMS

THACKREY, KENT PLANNING ANALYSIS CORP.

THOMPSON, JOHN T FORD AEROSPACE CO.

THORNTON, THOMAS NASA/JPL

TRAYSYELUE, WEISNER COMPUTER SCIENCES CORP.

TSAGOS, DINOS GRUMMAN

TZENG, NIGL NASA/STX

UPPERT, DICK GRUMMAN

URBINA, DANIEL FORD AEROSPACE CO.

VALETT, JON NASA/GSFC

VAN METER, DAVID LOGICON, INC.

VEHMEIER, DAWN R OASD(P&L)WSIG

VIEHNEAU, ROBERT KAMAN SCIENCES CORP.

VOIGT, DAVID BENDIX FIELD ENGINEERING

VOIGT, SUSAN NASA/LARC

CORP.

WALIGORA, SHARON R COMPUTER SCIENCES CORP.

WALKER, CARRIE K NASA/LARC

SECONDNASAAda USERSSYMPOSIUMATTENDEES

WALKER,GARYN..................... JET PROPULSIONLAB
WALKER,JOHN IIT RESEARCHINSTITUTE
WATSON,BARRY IIT RESEARCHINSTITUTE
WAUGH,DOUG IBM
WEEKLEY,JIM FORDAEROSPACECO.
WEISMAN,DAVID UNISYS CORP.

WELBORN, RICHARD P STANFORD TELECOMMUNICATIONS, INC.

WENDE, ROY FAIRCHILD SPACE CO.

WESTON, WILLIAM NASA/GSFC

WILDER, DAVID C DEPT. OF DEFENSE

WILLIAMS, CHERYL CTA, INC.

WILSON, BILL M QUONG ASSOC.

WILSON, RUSSELL BOEING AEROSPACE CO.

WITTIG, MIKE IIT RESEARCH INSTITUTE

WONG, ALICE A FEDERAL AVIATION AGENCY

WOOD, DICK COMPUTER SCIENCES CORP.

WOODWARD, HERBERT P TRW FEDERAL SYSTEMS GROUP

YANG, CHAO NASA/GSFC

YOUNG, LEON WESTINGHOUSE ELECTRIC CORP.

ZAVELER, SAUL U.S. AIR FORCE

ZELKOWITZ, MARV UNIVERSITY OF MARYLAND

ZOCH, DAVID FORD AEROSPACE CO.

A-8

APPENDIX B -- STANDARD BIBLIOGRAPHY OF SEL LITERATURE

5798

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi-

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedinus From the First Summer Software Enai-

neerinu Workshop, August 1976

SEL-77-002, Proceedinas From the Second Summer Software En-

gineerinu Workshop, September 1977

SEL-77-004, A Demonstr_ti0n of AXES for NAVPAK, M. Hamilton

and S. Zeldin, September 1977

SEL-77-005, GSFC NAVPAK Desian SPecifications Lanauaaes

StudY, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, Proceedinus From the Third Summer Software Enqi-

neerinq Workshop, September 1978

SEL-78-006, G$FC Software Enqineerinq Research Requirements

Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleiqh Curve to the SEL

Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP)

User's Guide (Revision 3), W. J. Decker and W. A. Taylor,

July 1986

SEL-79-002, The Software Engineering Laboratory: Relation-

ship Equations, K. Freburger and V° R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System

Description and User's Guide, C. E. Goorevich, A. L. Green,

and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-

gram Design Language (PDL) in the Goddard Space Flight Center

(GSFC) Code 580 Software Design Environment, C. E. Goorevich,

A. L. Green, and W. J. Decker, September 1979

B-I

SEL-79-005, Proceedinus From the Fourth Summer Software En-

uineerinu Workshop, November 1979

SEL-80-002, Multi-Level Expression Desiun Lanuuaue-

Reuuirement Level (MEDL-R) System Evaluation, W. J. Decker

and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Suppo;t

Software System (MMS/GSSS) State-of-the-Art Computer Systems/

Compatibility Study, T. Welden, M. McClellan, and

P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

SEL-80-006, Proceedinus From the Fifth Annual Software Enui-

neerinu Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation

Models for Software Systems, J. F. Cook and F. E. McGarry,
December 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM)

User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Enuineerinu Laboratory Prourammer Work-

bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluatino Software Development by Analysis of
_J_D__, D. M. Weiss, November 1981

SEL-81-012, The Ravleiuh Curve as a Model for Effort Distri-

bution Over the Life of Medium Scale Software Systems,
G. O. Picasso, December 1981

SEL-81-013, Proceedinos From the Sixth Annual Software Enqi-
neerino Workshop, December 1981

SEL-81-014, Automated Collection of Software Enuineerinq Data

in the Software Enuineerinu Laboratory (SEL), A. L. Green,

W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,

D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-104, The Software Enuineerinq Laboratory, D. N. Card,

F. E. McGarry, G. Page, et al., February 1982

_2

SEL-81-107, Software Enaineerina Laboratory (SEL) Compendium

of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,

February 1982

SEL-81-110, Evaluation of an Independent Verification and

Validation (IV&V) Methodoloav for Fli0ht Dynamics, G. Page,

F. E. McGarry, and D. N. Card, June 1985

SEL-81-205, Recommended Approach to Software Development,

F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Manaaement Measures of Software

Development, G. Page, D. N. Card, and F. E. McGarry,

September 1982, vols. 1 and 2

SEL-82-004, Collected Software Enuineerina Papers: Vol-

ume i, July 1982

SEL-82-007, Proceedinus From the Sev@Dth Annual SQftwar@

Enaineerina Workshop, December 1982

SEL-82-008, Evaluatinu Software Development by Analysis of

Chanaes: The Data From the Software Enuineerina Laboratory,
V. R. Basili and D. M. Weiss, December 1982

SEL-82-I02, FORTRAN Static Source Code Analyzer Pr0qr_m

(SAP) System DescriDti0n (R_vi_ion i), W. A. Taylor and

W. J. Decker, April 1985

SEL-82-I05, Glossary of Software Enaineerina Labo_tO_y
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

SEL-82-806, Annotated BibliouraDhv of Software Enaineerinq

Laboratory Literature, M. Buhler and J. Valett, November 1989

SEL-83-001, An Approach to Software Cost Estimation,

F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,

D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected $oftw_r@ Engin@@rina Papers:
ume II, November 1983

Vo i-

SEL-83-006, Monitorino Software DeveloPment Throuqh Dynamic

Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceedinas From the Eiqhth Annual Software En-

aineerinq Workshop, November 1983

H_3

SEL-83-I06, Monitori_q Software Development Throuuh Dynamic

Variables (Revision 1), C. W. Doerflinger, November 1989

SEL-84-001, Manager's H_ndbook for Software Development,

W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-003, Investiqation of Specification Measures for the

Software Enqineerina Laboratory (SEL), W. W. Agresti,

V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedinas From the Ninth Annual Software Enqi-

n@erinu Workshop, November 1984

SEL-85-001, A Comparison of Software Verification Techniques,

D. N. Card, R. W. Selby, Jr_., F. E. McGarry, et al., April
1985

SEL-85-002, Ada Training Evaluation and Recommendation_ From

the Gamma Ray Observatory Ada Development Team, R. Murphy

and M. Stark, October 1985

SEL-85-003, Collected Software Enuineerinu Papers: Vol-

ume III, November 1985

SEL-85-004, Evaluations of Software Technolouie$: Testinq,

CLEANROOM. and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testina, D. N. Card,

C. Antle, and E. Edwards, December 1985

SEL-85-006, Proceedings From the Tenth Annual Software Engi-

neering Workshop, December 1985

SEL-86-001, Pr0qrammer's Handbook for Fliqht Dynamics Soft-

ware DeveloPment, R. Wood and E. Edwards, March 1986

SEL-86-002, General Obiect-Oriented Software Development,

E. Seidewitz and M. Stark, August 1986

SEL-86-003, Fliuht Dynamics System Software Development En-

vir0nment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Enqineering Papers:

ume IV, November 1986

Vo i-

SEL-86-005, Measurinq Software Design, D. N. Card, October
1986

SEL-86-006, Proceedinqs From the Eleven_h Annual Software

Engineering Workshop, December 1986

B-4

SEL-87-001, Product Assurance Policies and Procedures for

Fliaht Dynamics Softwar@ D@v@i0pment, S. Perry et al., March
1987

SEL-87-002, Ada Style Guide (V@r_ion i,i), E. Seidewitz

et _I., May 1987

SEL-87-003, Guidelines for Applvina the Composite Specifica-.

tion Model (CSM), W. W. Agresti, June 1987

SEL-87-004, AssessinQ the Ada Desian Process and _ts Impli-

cations: A Case Study, S. Godfrey, C. Brophy, et al.,

July 1987

SEL-87-008, Data Collection Procedures for the Rehosted SEL

Database, G. Heller, October 1987

SEL-87-009, Collected Software Enaineerinq Papers:

S. DeLong, November 1987

Volume V,

SEL-87-010, Proceedinas From th@ Tw@Ifth Annual $oftwar_ En-

aineering Workshop, December 1987

SEL-88-001, System Testina of a Production Ada Project: The

GRODY Study, J. Seigle, L. Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Vol-
ume VI, November 1988

SEL-88-003, Evolution of Ada Technolouv in th@ Fliqht Dynam-
ics Area: Design Phase Analysis, K. Quimby and L. Esker,
December 1988

SEL-88-004, Proceeding of the Thirteenth Annual Software

Engineering Workshop, November 1988

SEL-88-005, Proceedinqs of the First NASA Ada User's Sympo-
sium, December 1988

SEL-89-002, Implementation of a Production Ada Project:

GRODY Study, S. Godfrey and C. Brophy, September 1989

The

SEL-89-003, Software Management Environment (SME) Concepts

and Architecture, W. Decker and J. Valett, August 1989

SEL-89-004, Evolution of Ada Te_hnoiogy in the Flight Dy-

namics Area: Implementation/Testing Phase Analysis,

K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry,
November 1989

B-5

SEL-89-005, Lessons Learned in the Transition to Ads From
FORTRAN at NASA/Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Enainmerina Paoers: Vol-
ume VII, November 1989

SEL-89-007, Proceedinas of the Fourteenth Annual Software
Enoineerlno Workshop, November 1989

SEL-89-008, Proceedlnas of the Second NASA Ads Users' SvmDo-

slum, November 1989

SEL-89-101, Software Enaineerina Laboratory _SEL_ Database
0Eganization and User's Guide _Revision 11, M. So, G. Heller,

S. Steinberg, K. Pumphrey, and D. Spiegel, February 1990

8EL-90-001, Database Access Manaaer for the Software Enai-
neerlna Laboratory _DAMSEL_, M. Buhler and K. Pumphrey,
March 1990

SEL-RELATED LITERATURE

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,

"Designing With Ads for Satellite Simulation: A Case Study,"
proceedinas of the First International Symposium on Ads for
the NASA SPace Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et el., "Meas-

uring Software Technology," Proaram Transformation and Pro-
arammlna Environments. New York: Springer-Verlag, 1984

iBailey, J. W., and V. R. Basili, "A Meta-Model for Soft-

ware Development Resource Expenditures,"

New York: IEEE Computer Society Press, 1981

7Basili, V. R., Maintenance . Reuse-Oriented Software

D_, University of Maryland, Technical Report
TR-2244, May 1989

iBasili, V. R., "Models and Metrics for Software Manage-
ment and Engineering," ASME Advances in Comouter Technoloav,

January 1980, vol. 1

7Basili, V. R., Software Develooment: A Paradiam for the

Future, University of Maryland, Technical Report TR-2263,
June 1989

Basili, V. R., Tutorial on Models and Metrics for Software
MQnaaement and Enalneerina. New York: IEEE Computer Society

Press, 1980 (also designated SEL-80-008)

_6

3Basili, V. R., "Quantitative Evaluation of Software Meth-

odology," Proceedinas of the First Pan-Pacific Computer Con-

ference, September 1985

iBasili, V. R., and J. Beane, "Can the Parr Curve Help With

Manpower Distribution and Resource Estimation Problems?,"

Journal of Systems and Software, February 1981, vol. 2, no. 1

iBasili, V. R., and K. Freburger, "Programming Measurement

and Estimation in the Software Engineering Laboratory,"

Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-

ships Between Effort and Other Variables in the SEL,"

Proceedinas of the International Computer Software and Ap-
plications Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction

and Reliability Assessment in the SEL Environment, University
of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and

Complexity: An Empirical Investigation," Communication_ of
the ACM, January 1984, vol. 27, no. 1

IBasili, V. R., and T. Phillips, "Evaluating and Comparing

Software Metrics in the Software Engineering Laboratory,"
Proceedinas of the ACM SIGMETRICS Symposium/Workshop: Qual-

ity Metrics, March 1981

Basili, V. R., and J. Ramsey, Structural Coveraqe of Func-

tional Testinq, University of Maryland, Technical Report

TR-1442, September 1984

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-

type Expert System for Software Engineering Management,"

Proceedinas of the IEEE/MITRE ExPert SYstems in Government
Symposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-

ures for Software Development," Proceedinqs of the Workshop

on Ouantitative Software Models for Reliability, Complexity.

and Cos_. New York: IEEE Computer Society Press, 1979

5Basili, V., and H. D. Rombach, "Tailoring the Software

Process to Project Goals and Environments," Proceedings of

the 9th International Conference on Software Enqineerinq,
March 1987

B-7

5Basill, V., and H. D. Rombach, "T A M E: Tailoring an Ads
Measurement Environment," pEoceedlnas of the Joint Ads Con-

ference, March 1987

5Basill, V., and H. D. Rombach, "T A M E: Integrating
Measurement Into Software Environments," University of

Maryland, Technical Report TR-1764, June 1987

6Basill, V. R., and H. D. Rombach, "The TAME Project:
Towards Improvement-Oriented Software Environments," IEEE
Transactions on Software Enaineerinu, June 1988

7Baaili, V. R., and H. D. Rombach, Towards A ComPrehensive
Framework for Reuse: A Reuse-Enablina Software Evolution

EnY__, University of Maryland, Technical Report
TR-2158, December 1988

2Basill, V. R., R. W. Selby, Jr., and T. Phillips, "Metric

Analysis and Data Valldatlon Across FORTRAN Projects," IEEE
Transactions on Software Enalneerina, November 1983

3Basill, V. R., and R. W. Selby, Jr., "Calculation and Use
of an Environments's Characteristic Software Metric Set, "

proceedlnas of the Eiohth Internatlonsl Conference on Soft-
ware Enoineerlna. New York: IEEE Computer Society Press,

1985

Basill, V. R., and R. W. Selby, Jr., Comparino the Effective-
ness of Software Testlna Strateales, University of Maryland,

Technical Report TR-1501, May 1985

3Basill, V. R., and R. W. Selby, Jr., "Four Applications
of a Software Data Collectlon and Analysis Methodology," Pro-
ceedlnas of the NATO Advanced Study Institute, August 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Ex-

perimentation in Software Engineering," lEEr Transactions on
Software Enaineerlno, July 1985

5Basili, V. and R. Selby, Jr., "Comparing the Effective-
ness of Software Testlng'St.rategies," IEEE Transactions on
Software Enaineerino, December 1987

2Basili, V. R., and D. M. Weiss, A Methodoloav for Collectino
Valld Software Enalneerina Data, University of Maryland,

Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collect-

ing Valid Software Engineering Data," IEEE Transactions on
Software Enolneerlna, November 1984

B-8

1Basili, V. R., and M. V. Zelkowltz, "The Software Engi-

neering Laboratory: Objectives," Proceedlnas of the Fif-
teenth Annual Conference on Comguter Personnel Research,
August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software

Measurement Experiment," Proceedinas of the Software Life
Cycle Manaaement Workshop, September 1977

1Basill, V. R., and M. V. Zelkowitz, "Operation of the Soft-

ware Engineering Laboratory," Proceedlnos of the Second Soft-
ware Life Cycle Manaaement Workshoo, August 1978

1Basili, V. R., and M. V. Zelkowitz, "Measuring Software

Development Characteristics in the Local Environment," Com-
outers and Structures, August 1978, vol. 10

Basill, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale

Software Development," Proceedlnas of th§ Third Interna-
tional Conference on Software Enaineerlna. New York: IEEE

Computer Society Press, 1978

5Brophy, C., W. Agresti, and V. Basill, "Lessons Learned

in Use of Ada-Orlented Design Methods," Proceedinas of the
Joint Ads Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili,

"Lessons Learned in the Implementation Phase of a Large Ads
Project," Proceedinos of the Washinaton Ads Technical Con-
ference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and
Program Size," Computer Sciences Corporation, Technical Memo-
randum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques

for Resource Estimation," Computer Sciences Corporation,
Technical Memorandum, November 1982

3Card, D. N., "A Software Technology Evaluation Program,"
Annals do XVIII Conaresso Nacional de Informatica,
October 1985

5Card, D., and W. Agresti, "Resolving the Software Science
Anomaly," The Journal of Systems and Software, 1987

6Card, D. N., and W. Agresti, "Measuring Software Design
Complexity," The Journal of Systems and Software, June 1988

B-9

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan,

"A Software Engineering View of Flight Dynamics Analysis

System," Parts I and II, Computer Sciences Corporation,
Technical Memorandum, February 1984

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empirical

Study of Software Design Practices," IEEE Transactions on

Software Enaineerinq, February 1986

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteris-

tics of FORTRAN Modules," Computer Sciences Corporation,

Technical Memorandum, June 1984

5Card, D., F. McGarry, and G. Page, "Evaluating Software

Engineering Technologies," IEEE T_nsactions on Software

_, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for

Software Modularization," Proceedinas of the Eiahth Interna-

tional Conference on Software Enuineerina. New York: IEEE

Computer Society Press, 1985

iChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To

Evaluate Software Engineering Methodologies," proceedinqs of

the Fifth International Conferenc_ on Software Enaineerinq.

New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan,

"An Approach for Assessing Software Prototypes," ACM Software

Enaineerinu Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software

Development Through Dynamic Variables," Proceedinqs of the

Seventh International Computer Software and Applications

Conference. New York: IEEE Computer Society Press, 1983

5Doubleday, D., "ASAP: An Ada Static Source Code Analyzer

Program," University of Maryland, Technical Report TR-1895,

August 1987 (NOTE: I00 pages long)

6Godfrey, S., and C. Brophy, "Experiences in the Implemen-

tation of a Large Ada Project," Proceedinq_ of the 1988
washinqton Ada Symposium, June 1988

Hamilton, M., and S. Zeldin, A Demonstration of AXES for

NAVPAK, Higher Order Software, Inc., TR-9, September 1977

(also designated SEL-77-005)

Jeffery, D. R., and V. Basili, Ch_r%cterizina Resource Data:

A Model for Loaical Association of Software Data, University

of Maryland, Technical Report TR-1848, May 1987

B-IO

6jeffery, D. R., and V. R. Basili, "Validating the TAME Re-
source Data Model," Proceedinas of the Tenth International

Conference on Software Enuineerina, April 1988

5Mark, L., and H. D. Rombach, A Meta Information Base for

Software Enuineerinq, University of Maryland, Technical Re-

port TR-1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Software

Engineering Information Bases From Software Process and Prod-

uct Specifications," Proceedinqs of the 22nd Annual Hawaii
International Conference on System Sciences, January 1989

5McGarry, F., and W. Agresti, "Measuring Ada for Software

Development in the Software Engineering Laboratory (SEL),"
Proceedinus of the 21st Annual Hawaii International Con-

ference on System Sciences, January 1988

7McGarry, F., L. Esker, and K. Quimby, "Evolution of Ada

Technology in a Production Software Environment," PrQCeedinas

Qf the Sixth Washinqton Ada Symposium (WADAS), June 1989

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the

Impact of Computer Resource Quality on the Software Develop-
ment Process and Product," Proceedinqs of the Hawaiian Inter-

national Conference on System Sciences, January 1985

National Aeronautics and Space Administration (NASA), NASA

Software Research Technoloav Workshop (Proceedings), March

1980

3page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-

perience With Independent Verification and Validation,"

Proceedinas of the Eiqhth International Computer Software

and Applications Conference, November 1984

5Ramsey, C., and V. R. Basili, An Evaluation of ExPert Sys-

tems for Software Enqineerinq Manaaement, University of

Maryland, Technical Report TR-1708, September 1986

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process

Using Structural Coverage," Proceedinas of the Eighth Inter-

national Conference on Software Enaineerina. New York:

IEEE Computer Society Press, 1985

5Rombach, H. D., "A Controlled Experiment on the Impact of

Software Structure on Maintainability," IEEE Transactions on

Software Enqineerinq, March 1987

B-11

6Rombach, H. D., and V. R. Baaili, "Quantitative Assessment

of Maintenance: An Industrial Case Study," Proceedlnas From
the Conference on Software Maintenance, September 1987

6Rombach, H. D., and L. Mark, "Software Process and Prod-

uct Specifications: A Basis for Generating Customized SE
Information Bases," Proceedinas of the 22rid Annual Hawaii

International Conference on System Sciences, January 1989

7Rombach, H. D., and B. T. Ulery, Establishlnu a Measure-
ment Based Maintenance Improvement Proaram: Lessons Learned

lUl___, University of Maryland, Technical Report
TR-2252, May 1989

5Seidewitz, E., "General Object-Oriented Software Develop-

ment: Background and Experience," Proceedinua of the 21st
Hawaii International Conference on System Sciences, January
1988

5Seldewitz, E., "General Object-Orlented Software Develop-
ment with Ada: A Life Cycle Approach," Proceedinos of the

CASE Technoloov Conference, April 1988

6Seldewltz, E., "ObJect-Orlented Programming in Smalltalk
and Ada," Proceedlnos of the 1987 Conference on Ob4ect-

Oriented Prooramminc Systems. Lanouaaes. and AoolicationM,
October 1987

4Seidewltz, E., and M. Stark, "Towards a General Object-
Oriented Software Development Methodology," Proceedinos of
the First International Symposium on Ads for the NASA SPace
Station, June 1986

7Stark, M. E. and E. W. Booth, "Using Ads to Maximize

Verbatim Software Reuse," Proceedinas of TRI-Ada 1969,
October 1989

Stark, M., and E. Seidewitz, "Towards a General Object-
Oriented Ads Lifecycle," Proceedlnus of the Joint Ads Con-
ference, March 1987

7Sunazuka. T., and V. R. Basili, Inteoratinu Automated Sup-

port for a Software Manauement Cycle Into the TAME System,
University of Maryland, Technical Report TR-2289, July 1989

Turner, C., and G. Caron, A ComParison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for

Software, Special Publication, May 1981

B.12

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Comoen-

dium, Data and Analysis Center for Software, Special Publi-

cation, April 1981

5Valett, J., and F. McGarry, "A Summary of Software Measure-

ment Experiences in the Software Engineering Laboratory,"
Proceedlnos of the 21st Annual Hawaii International Confer-

ence on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software De-

velopment by Analysis of Changes: Some Data From the Soft-

ware Engineering Laboratory," IEEE Transactions on Software

Jl, February 1985

5Wu, L., V. Basili, and K. Reed, "A Structure Coverage Tool

for Ada Software Systems," Proceedinos of the Joint Ada Con-

ference, March 1987

IZelkowitz, M. V., "Resource Estimation for Medium Scale

Software Projects," Proceedinos of the Twelfth Conference on
the Interface of Statistics and Comouter Science. New York:

IEEE Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Ex-

perimental Computer Science Research," Emoirical Foundations
for Computer and Information Science (proceedings),

November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Proto-

typing: A Case Study," Proceedinos of the 26th Annual Tech-
nical Svmoosium of the Washinuton, D. C., Chaoter of the ACM,

June 1987

6Zelkowitz, M. V., "Resource Utilization During Software

Development," Journal of Systems and Software, 1988

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of

a Software Measurement Facility," proceedincs of the Soft-

ware Life Cycle Manauement Workshoo, September 1977

NOTES:

1This article also appears in SEL-82-004, Collected Soft-

ware Enuineerino Papers: Volume I, July 1982.

2This article also appears in SEL-83-003, Collected Soft-

ware Enolneerino Papers: Volume II, November 1983.

3This article also appears in SEL-85-003, Collected Soft-

ware Enoineerinc Papers: Volume III, November 1985.

B-13

4This article also appears in SEL-86-004, Collected Soft-

ware Enuineerinq Papers: Volum_ IV, November 1986.

5This article also appears in SEL-87-009, Collected Soft-

ware Enuineerina Papers: Volume V, November 1987.

6This article also appears in SEL-88-002, Collected Soft-

ware Enuineerina Papers: Volum'@ VT, November 1988.

7This article also appears in SEL-89-006, Collected Soft-

ware Enuineerinq Papers: Vol_m@ VIT, November 1989.

B-14

